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The Ordinal Nature of Emotions:
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Abstract—Computational representation of everyday emotional states is a challenging task and, arguably, one of the most
fundamental for affective computing. Standard practice in emotion annotation is to ask people to assign a value of intensity or a class
value to each emotional behavior they observe. Psychological theories and evidence from multiple disciplines including neuroscience,
economics and artificial intelligence, however, suggest that the task of assigning reference-based values to subjective notions is better
aligned with the underlying representations.This paper draws together the theoretical reasons to favor ordinal labels for representing
and annotating emotion, reviewing the literature across several disciplines. We go on to discuss good and bad practices of treating
ordinal and other forms of annotation data and make the case for preference learning methods as the appropriate approach for treating
ordinal labels. We finally discuss the advantages of ordinal annotation with respect to both reliability and validity through a number of
case studies in affective computing, and address common objections to the use of ordinal data. More broadly, the thesis that emotions
are by nature ordinal is supported by both theoretical arguments and evidence, and opens new horizons for the way emotions are
viewed, represented and analyzed computationally.

Index Terms—Emotion annotation; labeling; ranks; ratings; classes, ordinal data; preference learning
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1 INTRODUCTION

ONE of the most basic challenges in affective computing
is annotation—that is, taking direct records of emo-

tionally significant events (audio, video, physiological, etc.),
and attaching labels that describe the way people assess the
emotions involved. It is basic because human assessments
are the model that affective computing usually aims to
match. Reproducing human assessments is what counts as
success in most applications; and the means of achieving
that is usually learning from a database of labeled records.
The challenge arises because the channels through which
people can externalize their impressions are frustratingly
narrow. What goes on inside the head during an emotional
experience is manifestly far more complex and diverse than
any kind of response that annotators can be expected to
make, and nobody should expect practicable ways of ex-
ternalizing it to be perfect.

The theme of this paper is that experience with that
challenge invites a shift. Exploring approaches with obvi-
ous attractions has thrown up difficulties that need to be
acknowledged. As a result, different groups have moved,
more or less independently, to explore techniques that are
less obvious, but that avoid key difficulties. The aim of
the paper is to articulate the case for that kind of shift,
and to give an overview of the work that shows how the
emerging approach can be carried forward. The techniques
that we highlight are ordinal. They rely on annotators to
rank two or more samples which may (or may not) be
represented by a scale. The scale may take various forms—
for instance intensity, or proximity to an archetypal state, or
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some theoretical attribute.
To some extent, emphasizing ordinality is about ac-

knowledging realities of measurement. Ordinal information
seems to be what people can deliver reliably. However, there
are other levels. Computationally, there is the question of
how to use ordinal information. Psychologically, there is the
question of what the priority of order tells us about the way
emotion is represented. That feeds back into computation,
because if human assessments are the model that affective
computing aims to match, then it matters to reproduce
the underlying representations as closely as possible. We
emphasize the level of measurement, but we also point to
what is known on the other levels.

The case involves several steps. To provide context, we
first summarize the problems in current practice and the
work from other disciplines, which provide an incentive to
develop relative conceptions of emotion (Section 2). Then
in Section 3 we present a holistic perspective of affective
computing through an ordinal lens. In particular, we first
outline the two core ordinal approaches for collecting an-
notation data (Section 3.1), we then describe the different
(good, bad and ugly) ways we can process those labels
within affective computing (Section 3.2) and in Section
3.3 we present statistical methods and machine learning
approaches for modeling affect from ordinal data. In Section
4, we consider measurement issues involving reliability
and validity (Section 4.1). We also present a number of
indicative case studies showcasing the benefits of relative
annotation across several affective computing domains. The
paper concludes with a discussion of the most common
objections, limitations, and challenges as well as the general
capacities of ordinal annotation (Section 5). Taken together,
the arguments and evidence presented in this paper make a
case for a paradigm shift in the way emotions are described
computationally, annotated, and modeled.
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TABLE 1
Cronbach’s α [1] coefficient values obtained in [2] for functionals (mean
value, mean rise and mean fall of the trace) associated with each trace
dimension. Note that α = 0.7 is almost always considered acceptable;

α = 0.6 is the lowest value commonly considered acceptable.

Intensity Valence Activation Power Expectation
Mean 0.74 0.92 0.73 0.68 0.71
Mean Rise 0.74 0.49 0.53 0.39 0.58
Mean Fall 0.68 0.45 0.55 0.55 0.51

2 INCENTIVES TO CONSIDER ORDINAL CONCEP-
TIONS

Early work on affective computing took up two contrasting
conceptions of emotion: categorical (reflected in everyday
language and basic emotion theories); and numerical (re-
flected in dimensional theories). Logic always indicated
that there was ground between them; however, affective
computing gave it limited attention. The argument of this
section is that in the light of experience, there are substantial
reasons to revisit the intermediate ground. They are of
three broad types. First, within affective computing, other
approaches have hit obstinate difficulties. Second, long-
standing theoretical arguments, in philosophy and psychol-
ogy, offer ways to understand the difficulties, and highlight
a different kind of conception. Third, recent technical work
in multiple disciplines shows that ideas like that can be
translated into practice. Taken together, those provide strong
encouragement to explore ordinal conceptions. In addition,
they incorporate ideas that are a valuable resource for
affective computing.

In this background section we initiate the debate on
the grounds of affective computing (Section 2.1) and then
discuss theoretical arguments and empirical evidence across
the disciplines of philosophy (Section 2.2), psychology (Sec-
tion 2.3), marketing (Section 2.4), behavioral economics (Sec-
tion 2.5), neuroscience (Section 2.6) and ultimately AI and
machine learning (Section 2.7).

2.1 The Affective Computing Context

In measurement theory, ordinal measurement lies between
two familiar alternatives: nominal and interval. Affective
computing initially explored the familiar options. Early
research in affective computing gravitated towards nominal
description—associating a sample with an emotion class
(‘angry’, ‘happy’, etc.) [3], [4]. It became clear early on that
there were problems with that approach, most obviously
because emotion in realistic situations rarely conformed to a
single category [5], [6]. That prompted interest in descriptive
schemes based on different psychological theories. The obvi-
ous candidates involved interval measurement, but applied
to attributes of emotion—‘dimensions’ such as valence and
activation [7].

There is now a substantial body of information about
interval approaches using annotation tools like FeelTrace.
FeelTrace [8] is a freely available software that allows
real-time emotional annotation based on Russell’s two-
dimensional (arousal-valence) circumplex model of affect [9]
and is arguably one of the most popular continuous affect
annotation tools. Through FeelTrace annotators can provide

a continuous time series of interval values (e.g., that lie
within [−1, 1]) for arousal, valence or any other emotional
dimension such as dominance and intensity (see Fig. 1).
The key issue is reliability. Early studies showed adequate
reliability for FeelTrace ratings, using records chosen so that
each portrayed a distinct and fairly consistent emotion, and
comparing mean dimensional ratings across records. For
example, Savvidou [10] reported coefficients of concordance
of 0.963 for valence and 0.978 for activation. However, one
of the obvious applications of interval description is to track
change within a record. When the same techniques were
applied to records where emotion changed substantially,
the reliability of ratings within a record fell to problematic
levels: the average α values for valence and activation
were 0.53 and 0.69, respectively. Those findings have been
followed up and amplified.

An obvious issue is separating theoretical constructs
and measurement types. If categories are fundamental to
emotion, as many theorists argue, the ideal might be to
combine them with interval measurement (how much anger
is the person feeling?). Different studies have compared in-
terval measures based on categories and theoretical dimen-
sions, using different measures of agreement. They agree
that dimensional ratings give higher reliability [11], [12].
However, they also confirm that interval measurement—
whether it is applied to dimensions or categories—ceases
to be reliable when there is substantial change within a
record. A study of the SEMAINE database (annotated with
FeelTrace) made the point by reporting agreement on the
size of rises and falls within samples [2]. Table 1 shows
some key comparisons. Figure 1 gives a concrete illustra-
tion of what lies behind that. All of the traces are of the
same record, in the same experiment. They are grouped to
show that different individuals gave very different accounts
of the way the emotion changed over the time period
(about 300 seconds). Those cases illustrate a conclusion that
was reached in different ways by different groups. There
are substantial problems with both of the more familiar
alternatives—nominal and interval. That conclusion points
strongly to exploring the option that lies between them,
which is ordinal measurement.

The difficulties that have been outlined were not com-
pletely predictable. People might have been able to deliver
interval descriptions in real time on at least some dimen-
sions. However, limited ability to do that is not a surprise.

2.2 Philosophical Background

A strong tradition in philosophy has presented emotional
experience as fundamentally qualitative. Recent discussions
develop the tradition in a way that it is useful to have
in the background. What has been called the standard
view compares them to propositions: a major alternative
compares them to perceptions [13]. In either case, they are
inherently structured. They are about something [14], and
embedded in narratives [15]. That explains why context
affects recognition so radically [16]: it lets us see what
expressive behaviors are about, and at least parts of the
narrative.

Notice that this complexity can easily bring together
elements that are evaluated very differently: we see the evil
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(a) (b)

Fig. 1. Individual differences between annotators using the FeelTrace annotation tool to label the same clip (from the SEMAINE dataset [2]). Some
(a) report rapid fluctuation, others (b) much more gradual change.

wolf meet sweet Red Riding Hood; we feel how bad the
outcome might be, but know it actually ends well. Finding
a single number to describe the experience that creates is
not simply a noisy task: it is mystifying that we can do it
at all [17]. Even ordering structures with multiple attributes
is not easy, but the basis for it is clearer. Hansson [18] has
proposed a unified formal structure of values and norms in
his ceteris paribus (or everything else being equal) preference
theory. Hansson claims that a very large proportion of daily
decisions and choices are based on comparisons that pick
out key features, and assume that the rest even out—hence
’ceteris paribus’. That kind of principle provides a basis for
ranking emotions.

2.3 Psychological Perspectives

Describing experience is a core problem in psychology, and
so it offers great deal of relevant material—theory and
empirical work, general and directly relevant to emotion.

Psychophysical research has explored methods of mea-
suring experience since Fechner (in 1860). Early research
concluded that pairwise comparison was the only sound
approach. It was a century later when Stevens showed
that ‘magnitude estimation’, based on numerical estimates,
could be reliable, within limits and given suitable precau-
tions [19]. Interval measurement methods in labeling are a
form of magnitude estimation. In effect, the issue is whether
this is a case where magnitude estimation is appropriate.

Psychophysical findings challenged naı̈ve intuitions, and
several levels of response emerged. On the level of mea-
surement, several kinds of mixed scale were found useful.
Prime examples are Likert and Semantic Differential scales
[20]. There are many variants. For example self-assessment
manikins (SAMs), much used in affective computing, belong
in a type of semantic differential where points on the scale
are given meaning in their own right (in the case of SAM,
by a picture) [21]. Similarly, graded pair comparisons ask
which of two cases is higher on a scale, and by how much
(very much more, much more, more, a little more, or just
barely more) [22]. The differences between mixed scales are
generally subtle, and we treat them as ordinal. The labels
obtained via Likert-based mixed scales are ordinal even
though they are very often (mis-)treated as interval values
[17].

A more radical, theoretical response was adaptation level
theory, which took shape in the 1940s, and was consoli-
dated by Helson in 1964 [23]. He viewed experience as
fundamentally relational. It signals departure from a default
level, the adaptation level, which is a weighted mean of
previous stimuli. In addition to recent experiences, which
act as an immediate referent, a longer-term process, linked
to conditioning, establishes more enduring comparators,
consisting of memories ordered in terms of intensity. Hence,
numerical descriptions are a proxy for describing where, in
a sequence built and anchored by comparisons, a particular
experience lies.

Those theoretical ideas apply directly to affect, as Helson
himself noted. He reported evidence that affective estimates
are relative to an adaptation level. That has an obvious
implication: it is very doubtful to treat equal ratings at
different points in a rating session as if they meant the same
thing. On a more abstract level, he considered it obvious that
there are different kinds of pleasantness or unpleasantness.
However, the different experiences can still be ordered, and
hence they can be treated as dimensional for some purposes.
It is striking that an early paper by Russell, who became the
best-known advocate of a dimensional account, stressed the
relevance of adaptation level theory to emotion [24].

Related ideas feature in many later theories. They in-
clude relative judgment models [25], [26] suggesting that ex-
perience with stimuli gradually creates our internal context,
and discussions of anchors [27], against which we rank any
new experience. The accounts agree that our choice about
an option is driven by our internal ordinal representation
of that particular option within a sample of options; not by
any absolute value of that option [28].

There is at least one account of that kind which deals in
depth with issues closely related to affect labeling. Stewart et
al. [28], extended theories of relative judgment to economic
decision making. Their work models the subjective value
involved in a decision as the outcome of a series of pairwise
ordinal comparisons within a sample of attribute values
drawn from memory; which, in turn, determine the final
rank of the decision within the sample of options. The the-
ory explicitly rejects appeals to underlying psycho-economic
scales. Instead, it offers a Helsonian picture. Binary, ordinal
comparisons to material held in memory provide the basis
of subjective value. The value reflects its rank in a sample
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biased towards recent experience, but also longer-term in-
formation about the distribution of relevant attributes. That
theoretical tradition provides a valuable perspective on the
issues that are considered in this paper. The argument is
emphatically not that the evidence forces us to accept that
kind of picture. The point is that the problems of data
collection within affective computing are not unique, and
not necessarily technicalities. There is good reason to ask
whether they point to questions at quite a deep level about
the way human affect works.

Given the theory, it is perhaps surprising that psychol-
ogy does not offer much direct empirical evidence on levels
of measurement. That may be because so much work has
focused on nominal responses (i.e., emotion categories).
However, at least one series of studies compares ordinal and
interval responses to affective stimuli, and, in line with the
theory, it shows a clear advantage for pairwise comparison.

The comparisons involve emotion intensity, reported by
using either a numerical scale, or graded pair comparison.
The scales reconstructed from graded pair comparisons
are more satisfying than the numerical estimates in multi-
ple ways. They show higher reliability (alpha coefficients
0.94 − 0.98 as against 0.82 − 0.87) [29]. They also agree
better with theoretical predictions [22]. The reconstructed
scales also satisfy tests of metric structure [29], suggesting
that the problem with interval measurement lies not in the
underlying experience, but in the task of externalizing it.
Note, though, that that applies to intensity: Table 1 indicates
that it stands out from other dimensions (particularly in
agreement on rises and falls). It cannot be taken for granted
that the same holds for other scales.

The concepts underlying this paper have been explored
in several other disciplines beyond psychology which we
cover briefly in the remainder of this section. The results
and evidence from these disciplines are also relevant for the
study of emotions.

2.4 Marketing and Social Psychology
The fundamental role of affect for human behavior in gen-
eral and decision making, in particular, has been at the
core of behavioral and social psychology. Experiments by
Zajonc et al. [30] attempted to shed light on the relationship
between affect and preference and revealed that a mere
exposure to certain options is sufficient for a subject to
develop a positive preference for those options. It seems that
the more often those options are presented to us the more
we tend to prefer them and react positively.

The study of values in social psychology has traditionally
been linked to the study of surveys that would be able to
capture appropriately the perceptions of such social values
[31]. Theoretically, the stance has been that rankings are
a superior method as social values (being subjective con-
structs) are inherently comparative and competitive [32].
As that suggests, relative choice among options appears to
be the best underlying mechanism for capturing concepts
that are subjective [33]. One of the largest concentrated
efforts within social psychology [31] reveals that the latent
variable structure of the two measures (ratings vs rankings)
are different.

In marketing research values are traditionally measured
with the use of rank-based questionnaires [32]. As societal

or ethical values are acquired, internalized and organized in
a hierarchical manner, the ranking approach naturally helps
the respondent to discover, reveal and crystallize his/her
hierarchy of values in a self-reporting manner [32]. Numer-
ous studies have attempted to find the golden standard for
assessing subjectively defined notions in marketing research
by comparing the most popular measurement approaches:
ratings and rankings. The empirical evidence in that area
is strong. For instance, a large scale study involving over
3, 500 students across 19 counties [34] compared ratings and
rankings for addressing the recurring problems of response
style differences and language biases in cross-national re-
search. The findings support the ranking approach: they
show that it is more effective at reducing response biases
in cross-cultural settings. Similarly to marketing and social
psychology, the paired comparison method is dominant in
studies involving image perception which attempt to assess
visual discomfort, viewing experience and stereoscopic im-
age quality of various multimedia types [35], [36], [37].

2.5 Behavioral Economics

Foundational to behavior is decision making and founda-
tional to decision making is judgment. How do we value
different options and decide to take one of the many?
Several theories of psychology have relied on the central
concept of distance among options: when one compares
two options she naturally assesses how close they are to
each other. It turns out however that the comparison is not
always symmetric. For instance the distance between A and
B is not the necessarily the same as the distance between
B and A. This phenomenon is what Tversky called features
of similarity [38] according to which people compare things
across a number of noticeable features, not just one. The
number of similar noticeable features determines the degree
of similarity.

Conventional decision-making theory—such as expected
utility theory and foraging theory [39], [40]—represents the
values of possible actions in some normative form and
assumes that options are evaluated in an absolute manner,
without considering other alternatives. Evidence from be-
havioral psychology, however, suggests that the valuation
of choice depends largely on the composition of the options
available. Naturally when people are faced with a large set
of options they report increasing difficulty in assigning val-
ues to all. Examined extensively, both animals and humans
seem to rely on context-dependent preferences that reflect
the particular alternative options they have available [41],
[42].

Another foundational aspect of behavioral economics is
the principle of humans acting as irrational agents when
they take decisions. The judgment heuristics theory intro-
duced by Kahneman and Tversky [43]—which is built on
the bounded rationality theory of Simon [44]—captures the
various factors that make us act irrationally. Such factors,
named heuristics by Kahneman and Tversky, were carefully
studied and reported in a series of papers that had a ma-
jor impact across several disciplines. The first heuristic in
support of our thesis is representativeness [45]: according to
that heuristic when people make judgments they compare
the value of the option to be judged to an internal model
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they maintain in their brains. Another heuristic relevant
to the ordinal approach is anchoring [43] which is the bias
our brains maintain systematically against any decision we
make or problem we attempt to solve. It is the context (so-
cial, emotional, spatial, temporal, and so on) which defines
a reference point against which we evaluate our options.
Framing [46], similarly to anchoring, is the way we make
decisions based on the way options are presented to us: if
for instance a reward over a bet dilemma is inverted and
instead is presented as a loss over a bet dilemma we will
most likely accept the reward in the former case and the bet
in the latter case. Overall, judgment heuristics suggest that
when humans assess options they do not assign a value to
their options but they rather rely on a change. Kahneman
put it simply as follows: “...it is safe to assume that changes are
more accessible than absolute values” [47].

2.6 Neuroscience
In neuroscience, Damasio [48] reports extensive experiments
on the role of emotion in decision making. They imply that
each time we are presented with a stimulus, we construct
and store an anchor (or a somatic marker) which is eventually
a mapping between the presented stimulus and our affective
state. We then use these somatic markers as drivers for
making choices between options. Given its unique role,
affect can naturally guide our attention towards preferred
options and, in turn, simplify the decision process for us.

The extensive study of the orbitofrontal cortex (OBC) is
particularly relevant to the message of this paper since it
has been correlated to rewards and their processing. Brain
activity in OBC seems to be a good predictor of the moti-
vational value of a reward [27], [49]. There is also evidence
in monkeys [50] suggesting that their brain—in particular
OBC—encodes values in a relative fashion. Further evidence
show that neurons in the monkey lateral intraparietal cortex
(LIP) encode a relative form of saccadic value which is
explicitly dependent on the values of the other available
alternatives [51]. Similar results have been reported for the
human medial OBC [52] and LIP [53].

Further neuroscientific evidence that supports our ordi-
nal stance can be found in studies investigating the divisive
normalization phenomenon. Divisive normalization is the
input-related activity of a neuron which is divided by the
summed activity of a large pool of neighboring neurons
[53]. The phenomenon has been widely observed in sensory
systems—explaining responses such as contrast gain control
in the retina—but recent neurophysiological evidence shows
that divisive normalization extends to higher-order cortical
areas of the brain which are involved in decision making
[53]. In particular the firing rates of a neuron are increased
by increases in the value of the represented option whereas
they are suppressed by increases in the value of the alterna-
tive options available [51]. Within decision-making divisive
normalization creates context dependence: our brain’s en-
coding of an option’s value is explicitly dependent on the
value of other available alternatives [53].

2.7 Artificial Intelligence and Machine Learning
The notion of preference is nowadays central in artificial intel-
ligence and machine learning [54]. The theoretical grounding

of learning from preferences [55] is based on humans’ lim-
ited ability to express their preferences directly in terms of a
specific value function [56]. That limitation holds even if the
underlying scale of the notion we wish to asses is ordinal
(e.g., in the case of ratings). This inability is mainly due to
the subjective nature of a preference and the notion we ex-
press a preference about, and the substantial cognitive load
required to give a specific value for each one of the available
options we have to select from; and (recalling Hansson)
each one of the options is characterized by a number of
attributes (or the context) that we consider. Thus instead of
valuing our options directly it is far easier and more natural
to express preferences about a number of limited options;
and this is what we end up doing normally. As the relative
comparison between pairs of options is less demanding
(cognitively) than the absolute assessment of a set of single
options, pairwise preferences are easier to specify than exact
value functions about available options.

Centrally to the message of this paper, rating, class and
ranking data of a survey or an annotation process can be
viewed as different forms of expressing a preference about
a subjective notion. A preference can be seen alternatively
as the building block of a global ordinal relationship that
exists among the various instances of the notion we attempt
to capture. The set of preferences available can, in turn,
encapsulate the underlying phenomenon; be it an emotion,
an opinion or a decision. In Section 3.3 the paper provides
an extensive discussion about the use of preference learning
as a way to model and predict preferences, or ordinal data
at large.

2.8 Summarizing the Background
Section 2 noted the problems associated with nominal and
interval approaches to emotion annotation. Logically, that
makes it natural to consider ordinal approaches; but there
would be grounds to be wary if that meant stepping into
unknown territory, theoretically and practically. In fact, re-
viewing related disciplines shows a very different picture.
This section indicates that they offer a wealth of relevant
material, which offers practically useful models at multiple
levels, and reaffirms the intellectual case for thinking of
emotion in ordinal terms.

3 AFFECTIVE COMPUTING: AN ORDINAL PER-
SPECTIVE

In this section we view affective computing from an ordinal
perspective and we detail the various phases involved in
this process. In particular, we present the ways by which
annotation data can be collected (Section 3.1), the resulting
data that can be processed (Section 3.2), and ultimately the
methods that we can use to analyze and model data (Section
3.3). To better illustrate the material presented in this section
the reader is referred to the three phases (columns) depicted
in Fig. 2; each phase corresponds to a subsection.

3.1 Annotation: First-order vs. Second-order
Prior to delving into the details of data analysis and machine
learning from an ordinal perspective we first need to view
the process of obtaining reliable and valid ground truth
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Fig. 2. An ordinal-centric taxonomy of approaches through the phases of annotation, data processing and data modeling. With dark green (gray
in print) and light green (light gray in print) color, respectively, we illustrate the first-order and second-order approaches for the ordinal analysis
of annotations. With gray color (dark gray in print) we indicate data processing or modeling approaches that do not follow the ordinal perspective.
Sections 3.1, 3.2, and 3.3, respectively, cover the phases of annotation, data processing, and modeling.

labels. We can distinguish two approaches that ultimately
lead to an ordinal analysis of data: the direct, or first-order
approach, and the indirect, or second-order, approach. In this
section we discuss the core differences between a first- and
a second-order approach to emotion annotation.

Given our ordinal-centric perspective we identify two
main ways through which one can collect annotation data
(see Fig. 2).

• Rank: Annotators are asked to give a preference
among two or more options or a rank. In this case
the labels are relative and hence the annotation data
is ordinal. An example of a time-discrete rank-based
annotation scheme is the forced-choice questionnaire
that requests responders to rank two or more op-
tions; a popular variant is the 3 alternative forced-
choice questionnaire asking the annotator to either
report her preference over two options, or instead
report that there is no noticeable difference between
the options. Another example of a time-continuous
rank-based annotation tool is AffectRank [57]—a rank
annotation variant of FeelTrace—that is covered in
detail in Section 4. Given that the data collected are
ordinal by nature, the analysis may rely on non-
parametric statistics and preference learning as sug-
gested in Section 3.3. We refer to this direct approach
of annotation data collection and analysis as first-
order and we represent it with dark green (or gray
in print) color in Fig. 2.
As mentioned extensively in Section 2 the first-order

(ranking) approach is dominant in domains such
as marketing, decision making, preference handling,
computational social choice, recommender systems,
machine learning, and combinatorial optimization.
For instance, more than 3, 000 datasets are included
in the {PrefLib} library of preferences for public use1;
examples include the Sushi dataset which contains
data about the preferences of people over variations
of Sushi2 and the LETOR [58] package of datasets
for research on learning to rank within information
retrieval.3 In affective computing the approach has
given us a number of accessible datasets such as the
Platformer Experience Dataset4 which contains visual
cues, behavioral data and pairwise preferences of the
experience of Super Mario Bros players [59] and the
Mazeball5 dataset which contains physiological re-
sponses (skin conductance and heart rate variability),
behavioral data and pairwise experience preferences
of puzzle gamers [60]. There is also a dataset con-
taining rank-based affect annotations of sound effects
[61] (Sonancia Crowdsourcing DataSet6).

• Amplitude: Annotators are asked to give an ampli-
tude or a magnitude label to the stimulus they are

1. Available at: http://www.preflib.org/
2. Available at: http://www.kamishima.net/sushi/
3. Available at: https://www.microsoft.com/en-

us/research/project/letor-learning-rank-information-retrieval/
4. Available at: http://ped.institutedigitalgames.com/
5. Available at: http://hectorpmartinez.com/
6. Available at: http://www.autogamedesign.eu/sonancia
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presented with. The amplitude can represent a con-
tinuous (interval) value—such as an arousal trace—
a class (nominal)—such as a categorical label for a
facial expression—or even an ordinal value such as a
Likert item response.

There are both theoretical and empirical arguments in
favor of ordinal approaches to affect annotation and affect
modeling. If so, obtaining ordinal labels in the first place
(first-order) would seem to be the ideal approach. That is not
always possible, however. By looking at the alternative way
of obtaining annotations (i.e., amplitude) we may distinguish
four possibilities for their analysis (see Fig. 2):

• Annotations are inherently ordinal, such as re-
sponses from SAM and Likert questionnaires or the
Geneva Wheel Model, and:

– following the second-order approach (see Fig.
2) they are processed as ordinal data (see Sec-
tion 3.3), or

– they are not processed as ordinal data

• Annotations are not ordinal, such as arousal traces
or categorical labels of facial expressions, and:

– following the second-order approach (see Fig.
2) they are processed as ordinal data given that
an underlying order exists within the annota-
tions, or

– they cannot be processed as ordinal data.

Within the second-order approach—as indicated by the
light green color (or light gray color in print) in Fig. 2—it
is recommended that whenever possible we treat amplitude
data of any type as ordinal and process them this way. In the
following sections we discuss the various aforementioned
data types and corresponding analysis in further detail.

3.2 Data Processing
According to our thesis if ordinal data is available (first-
order) or if the data has a meaningful underlying order
(second-order) then naturally the analysis should follow
the ordinal path. But, how should we process other data
types, and how should we machine learn from data types
that are not necessarily ordinal? Following the taxonomy of
Stevens [62] we can distinguish three data types that we can
obtain from an emotion annotation task: interval, nominal,
and ordinal. The first two types are not ordinal in principle
but, under particular assumptions, could be converted to
ordinal data and processed as such (see middle column of
Fig. 2).

The remainder of this section explores what the thesis of
the paper implies for the various data processing practices
followed in affective computing. That leads to an outline
that covers the three different data types used, and considers
the good, the bad and the so-called ugly practices associated
with each. These practices are depicted in Fig. 3, respec-
tively, as white, dark gray and light gray table cells.

3.2.1 Annotations Are Interval (Not Ordinal)
Interval data represent an affect state or dimension with a
scalar value or a vector of values. Intervals are often con-
fused with ratings and the terms are used interchangeably;

however, ratings are not interval but rather ordinal values
[17]. The most popular rating-based question is a Likert
item [63] in which users are asked to specify their level
of agreement with a given statement. Popular rating-based
questionnaires for affect annotation include the Geneva
Wheel model [64] and the Self-Assessment Manikin [65].
When annotations come in an interval form we can treat
them as such or alternatively treat them as nominal or
ordinal data.

If interval data is treated as such then a form of re-
gression is naturally implied. For instance, one can think
of attempting to approximate the absolute interval traces
of arousal or valence using FeelTrace (see top left cell of
Fig. 3). This is a dominant practice in affective computing
and it is also theoretically solid from a machine learning
perspective. However, as advocated in this paper, the ap-
proach of approximating absolute values is problematic for
subjective constructs such as emotions: it misrepresents the
ground truth of emotion.

Treating interval values as nominal data, instead, implies
that one needs to first classify continuous annotations (e.g.,
from FeelTrace) and then create models via classification
(see the two arousal classes at the middle left cell of Fig.
3). This is another dominant practice in affect modeling
(e.g., see studies on the SEMAINE dataset [66]) but recent
evidence suggests that such practice introduces a multitude
of biases in data and thus takes us further away from
the underlying ground truth [60]. Furthermore, creating
dichotomized labels from interval data creates unavoidable
problems where similar samples around the boundary are
artificially placed in different classes [67].

Any attempt to derive an ordinal scale from interval
data that characterize subjective notions appears to be a
good practice to follow [68], [69], [70]. In the example of
the bottom left cell of Fig. 3 the arousal values are not
considered; instead the points across the arousal dimension
are ordered based on their trace value. Several studies have
transformed values of affect to ordered ranks and then
derived affect models via preference learning. As we will see
in Section 4 such a transformation improves cross-validation
capacities [60], [71], [72].

3.2.2 Annotations Are Nominal (Not Ordinal)

The second annotation data type one may obtain comes in
nominal (or class) form. Nominal data are mutually exclusive
labels which are not ordered and can be stored as words
or text (e.g., Male, Female) or given a numerical label
(e.g., Male is 0, Female is 1); it is important to note that
numbered labels do not (and should not) imply that there
is an underlying order. Nominal data, however, sometimes
take the form of a preference involving two or more options;
for instance, they may indicate preference for the timbre of
one sound in a list, or the warmth of one image in a set.
There, an order of preference is implied—or is inherent—
and underlies the observations. Binary nominal data that
have a meaningful underlying order can also be viewed as
borderline nominal. Examples include answers to questions
such as do you think this is a sad facial expression? or is the user
in a high- or a low-arousal state? In all such instances we argue
that data can be safely treated as ordinal.
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Fig. 3. Processing data in affective computing: Treating column data types as row data types. White, dark gray, and light gray table cells, respectively,
illustrate the good, bad and the ugly practices according to the thesis of this paper. By good we refer to approaches that are theoretically sound
and compatible with the key message of the paper. By bad we refer to approaches that are technically flawed or even impossible and are also
incompatible with the ordinal approach advocated in this paper. Finally, by ugly (perhaps too aggressively) we refer to approaches that are possible
but nevertheless incompatible to the key message of the paper.

Deriving interval scores out of nominal values seems
flawed unless there is an underlying order across the classes
or nominal data can be aggregated somehow (see top center
cell of Fig. 3). An attempt towards that direction is presented
in [73]; the approach, however, leveraged on individual
evaluations instead of consensus labels. The key idea was
to create a probabilistic score per emotional category by
considering the inter-evaluator agreement. The idea is il-
lustrated at the top center cell of Figure 3, where three
videos are annotated by three evaluators. The first video was
consistently annotated as anger (i.e., A, A, A); the second
video received two votes for happiness and one vote for
sadness (i.e., H, S, H); the third video was consistently
annotated as happiness (i.e., H, H, H). If happiness is the
target emotion, these three videos can be mapped into an
interval score by considering their individual evaluations.
The third video was consistently annotated as happiness,
therefore, it is mapped to the positive extreme of the inter-
val. The second video received two votes for happiness, so
it is mapped lower than the third video, but higher than the
first video, which did not receive any vote for happiness.
The framework also considered relationships between emo-
tional categories. For example, a sample receiving the label
excitement increases its happiness score since these emotions
are related. This is only possible if individual evaluations
are available; otherwise, converting nominal values into
interval scores is not feasible or appropriate.

Nominal data is ideal for multi class machine learning
problems when emotional content is described in terms of

categorical emotions (see middle center cell of Fig. 3). The
common approach in affective computing is to ask multiple
evaluators to select an emotional category after watching or
listening to a stimulus. The individual evaluations are then
often aggregated creating consensus labels. Forced-choice
responses where an evaluator has to select an emotion out
of a list create inaccurate descriptors, however. Depending
on the options, the same stimulus can be annotated with
different emotions [9]. Furthermore, nominal labels do not
capture any within-class differences (i.e., different shades of
happiness). As a result, the nominal labels tend to be noisy
yielding poor inter-rater agreement, especially when the list
of emotions is large [74].

An order cannot be easily derived from classes which
are unordered—e.g., happiness and sadness (see bottom
center cell of Fig. 3). Indicatively, Lotfian and Busso [73]
used a probabilistic score to define preferences between
samples. The study established preferences when the dif-
ference between the probabilistic score of two samples was
greater than a margin. On a similar basis, Cao et al. [75]
also derived preferences from categorical emotions; in their
study, every sentence labeled as happy was preferred over
sentences labeled with another emotion. One drawback of
this approach, however, is that it is not possible to establish
preferences between samples from the same class. We argue
for a more direct, first-order, approach instead: to ask an-
notators to rank samples directly (e.g., is sample A happier
than sample B?).
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3.2.3 Annotations Are Ordinal
Ordinal data can be obtained via rank-based annotation pro-
tocols. The annotator is asked to rank a preference among
options such as two or more images, musical pieces [70],
sounds [61], video screenshots [57], [76], or videos [77]. On
its simplest form, the annotator compares two options and
specifies which one is preferred under a given statement
(pairwise preference). With more than two options, the an-
notator is asked to provide a ranking of some or all the
options. Examples of rank-based questions include: was that
level more engaging than this level? which facial expression looks
happier? is the user more aroused now?

Data obtained through the common rating-based anno-
tation tools in affective computing such as SAM is ordinal
by nature [17]. Such data is generally treated as interval
values, however—for instance, by averaging the obtained
annotation values; see the example at the top right cell
of Fig. 3 in which two SAM valence labels are assigned
numbers (4 and 7). While this is the dominant practice
in psychometrics at large, there is extensive evidence for
its invalidity and the numerous subjective reporting biases
such analysis introduces to data [17], [68], [78].

Another popular practice is to treat ordinal data as nom-
inal and view the problem as classification. In the example
of the middle right cell of Fig. 3 the SAM valence scale is
converted to three classes (low, neutral and high) and hence
the first label belongs to the neutral class whereas the other
label belongs to the high class. Recent studies, however,
compared the use of ordinal labels as they are against the
use of ordinal labels as classes and showcased the benefits
of the former in yielding more general affect models [60].

Finally treating ordinal data as ranks and viewing the
problem of affect modeling as a preference learning task
both respects the nature of the data and yields affect models
of supreme validity [60], [72] and reliability [57]. In the
example of the bottom right cell of Fig. 3 we only know
that the right label has a higher value of valence than
the left label; however, the value difference between them
is unknown. The studies presented in Section 4 provide
additional evidence for the superior nature of relative affect
annotation and its analysis for affect modeling.

3.3 Modeling
Independently of which approach one follows to obtain
ordinal labels (first- or second-order) data is ultimately
stored in a rank or pairwise format and ready to be analyzed
statistically or derive affect models from. A popular objec-
tion against the use of ordinal labels is the lack of statistical
tools and methods to process them—note that section 5
addresses this and other common objections directly. As a
response to this objection this section outlines the palette of
data analysis tools and statistical methods available for the
processing of ordinal data.

3.3.1 Statistical Methods for Ordinal Data
Standard data summarization approaches based on aver-
ages or standard deviations are strictly not applicable on
ordinal data. Instead, approaches for analyzing ordinal data
should rely on non-parametric statistics such as Spearman’s
rank correlation (e.g., as in [77]). It is important to note that

Norman [79] showed empirically in one dataset that Pear-
son’s correlation is robust enough when compared against
Spearman’s rank correlation. Such evidence could support
the use of standard parametric correlation tests that treat
ordinal data as interval values. Nevertheless such practice
ignores the nature of the data and instead views ordinal
labels of emotion as magnitudes of emotion, hence adding
bias to the underlying ground truth [60].

Considering statistical factor analysis for ordinal data
one may use the Wilcoxon signed-rank test [80] which by-
passes inter-personal subjective differences by comparing
only within-participant ranks. A common alternative is
Kendall’s τ [81] that can be used to calculate the correlation
between the hypothesized order (e.g., A is happier than B)
and the obtained labeled ranks—see e.g., [60]. Further the
Mann–Whitney [82], the Kruskal–Wallis [83] and Friedman’s
[84] tests for three (or more) groups of ranks are also directly
applicable to ordinal data. Finally the Bradley-Terry model
may be considered which uses a linear function mapping
paired preferences to probabilities within an interval scale
[35].

When it comes to the estimation of inter-rater
agreement—a typical analysis when several raters are
involved—Cronbach’s α [1] is the dominant coefficient in
the affect annotation literature. Cronbach’s α, however, is
not applicable to ordinal data and therefore cannot be used
to estimate the agreement across annotators’ labels that are
either first-order ordinal or they are processed as ordinal in
a second-order manner. Krippendorff’s α [85], on the other
hand, is a rather generic statistic that can measure the degree
of agreement among annotators through several annotation
types (including nominal, ordinal, and interval) and it is
also able to handle missing data. It is thus recommended
as a versatile statistic of inter-rater agreement for annotators
who can either label, categorize, rate, or even rank stimuli in
terms of emotion. The measure has been used in a number
of studies which compare the inter-rater reliability of ordinal
labels against other label types [57], [86].

In addition to a simple statistical analysis one may wish
to machine learn the ordinal data. The next section focuses
on preference learning algorithms [54], [55], the natural
approach to process ordinal data and derive models from
this data.

3.3.2 Preference Learning
Preference learning (PL) is a subfield of supervised learning
dedicated to the processing of ordinal labels. The preference
learning paradigm as an approach for affective modeling
was first introduced by Yannakakis in 2009 [69]. Since then
numerous studies in affective computing have used pref-
erence learning for affect detection and retrieval through
images [87], [88], [89], [90], videos [76], [91], music [70], [92],
sounds [61], speech [60], [75], [93], games [60], [94], [95] and
text [96].

There are several algorithms and methods available for
the task of preference learning. Most of them reduce the
problem to pairwise comparisons where the task is to de-
termine whether one sample, A, is preferred over another
sample, B, (i.e., A � B). The results of the pairwise com-
parisons are used to rank the samples. It is important to note
that any supervised learning algorithm can be converted
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to a preference learning problem by using an appropriate
formulation. Linear statistical models, such as ordinal re-
gression, linear discriminant analysis and large margins,
and non-linear approaches, such as Gaussian processes,
shallow and deep artificial neural networks, and support
vector machines (SVMs), are directly applicable.

A popular derivation for preference learning consists
of using binary classifiers. Let φ be the feature vector of
sample x. If xi is preferred over xj (i.e., xi � xj), the
objective is to find a hyperplane w such that w(φi−φj) > 0,
which is equivalent to a binary classification problem where
the features are the subtraction of their respective feature
vectors. This problem can be solved by any binary classifier;
e.g., RankSVM is the equivalent preference learning method
for SVMs [97].

An alternative formulation for preference learning is
training a function f that maintains a higher preference
for the preferred option; for example, if xi � xj then
f(φi) > f(φj). There are several approaches to create this
function: for example, it can take a parametric distribution
as done with Gaussian processes [98], or can be learned
from data using deep learning structures as performed via
convolutional neural networks [89], [94], [99], via RankNet
[100], or via neuroevolution [60], [69]. Studies have demon-
strated that all aforementioned methods provide compelling
results [69], [73], [89], [90], [93], [99], [101]. For the interested
reader, a number of preference learning methods includ-
ing RankSVM, neuroevolutionary preference learning and
preference learning via backpropagation are contained in
the preference learning toolbox (PLT) [102]. PLT is an open-
access toolkit7 built and constantly updated for the purpose
of easing the processing of ordinal labels. Similar arguments
can be made for labeling relative scores, where approxi-
mations can be made to reduce the number of pairwise
comparisons to annotate n different samples.

3.3.3 Global Ranking via Pairwise Preferences

It is worth noting that for n different samples, a direct
evaluation of all possible pairwise comparisons involves
n(n−1)

2 assessments. As n increases, the number of com-
parisons becomes unfeasible (O(n2)). Inferring the global
ranking out of these comparisons can be formulated as
a sorting problem with noisy pairwise evaluations. There
are various algorithms to approximate the global ranking
using a subset of the possible comparisons. Some of these
methods are directly applicable in affective computing,
through which the required pairwise comparisons between
the samples are dictated by the algorithm; see for example
the work of Jamieson and Nowak [103]. Other methods
rely on pairwise comparisons between randomly selected
samples; see for example the work of Wauthier et al. [104].
The complexity of sorting algorithms is O(n log2 n). Un-
der realistic assumptions, it is possible to approximate the
ranking using less comparisons. For example, Jamieson and
Nowak [103] suggested that if the samples can be embedded
in a lower d-dimensional Euclidean space that respects the
ranking between samples, the full ranking can be obtained
with O(d log2 n) actively selected comparisons. In practice,

7. Available at: http://plt.institutedigitalgames.com/

studies have successfully estimated global ranking even by
sampling from possible pairwise comparisons [105].

3.3.4 Preference Learning Applications for Affective Com-
puting
Any application in emotion recognition can be formulated
as a ranking problem in which preference learning algo-
rithms are trained to predict ordinal labels. Examples of
applications include forensic analysis where the goal is to
prioritize the videos or audio to be analyzed by selecting
a subset of recordings with target emotional content (e.g.,
threatening behaviors). Another example is in identifying
emotionally salient regions, relying on relative emotional
changes [106]. Computational tools that are able to rank
emotions are also suitable for emotion retrieval, where
the goal is to identify examples associated with a given
emotional content [73]. Applications of emotional retrieval
include solutions for health care domains [107], [108]. In lon-
gitudinal studies relying on remote assistant technologies,
rank-based emotion retrieval can provide an ideal frame-
work for a healthcare practitioner to identify and review
relevant events from patients with emotional disorders.
Emotion retrieval from speech can facilitate better solutions
for call centers. It can also facilitate the collection of natural
emotional speech databases [109]. Emotion-aware recom-
mendation systems are also an important application area
for preference learning using ordinal labels (e.g., selecting
music or sounds conveying emotions that match the current
affective preference of the user [61], [70]).

The breadth of applications expand to video-based [57],
[76], [77], image-based [35], [37], [37], speech-based [106],
music-based [70], [110] or physiology-based [111] emotion
recognition for health, educational or entertaining [78] pur-
poses. The next section covers a few successful applications
directly showcasing the benefits of ordinal annotation and
processing for affect modeling.

4 AFFECTIVE COMPUTING CASE STUDIES

Ordinal conceptions have rarely been identified as a major
issue in affective computing, but there has been a gradual
growth of published studies where ordinal techniques were
used. This section offers the first reasonably comprehensive
overview of those studies. We emphasise affect annotation
studies that compare ordinal annotations against other anno-
tation forms (e.g., class-based or interval-based protocols)
within the domains of video, face, body, music and sounds,
speech, and game experience annotation. We begin in Sec-
tion 4.1 by making explicit the measures that we use to com-
pare approaches, i.e., reliability and validity. Those measures
are then used to consider relevant studies, grouping them by
domain. Section 4.8 then integrates across all the domains,
and summarises the evidence of comparative benefits for
ordinal labels.

4.1 Performance Measures

In the previous sections we argued for the advantages
of ranks as an emotion annotation tool. Thus, naturally,
our thesis depends on measures of performance that show
such advantages. In many disciplines such as engineering
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and in several problems with objectively defined reference
points (ground truths), accuracy can be measured as the
difference between the data observations and the reference
value. However, such a measure is not available for subjec-
tive notions, as the underlying ground truth is unknown.
Turning to affective computing, a necessary starting point is
identifying ways to measure the performance of annotation.
Two kinds of measure are available, involving reliability and
validity. Those notions in psychometrics are directly linked
to the notions of precision and accuracy, respectively. The
first estimates the degree of repeatability of the observation
whereas the latter estimates the proximity of an observation
to the underlying true value (ground truth). Our thesis takes
both into account.

4.1.1 Reliability
Reliability is a standard concept in quantitative research
methods, and it is a major concern whenever human re-
spondents are used to provide data for analysis. It has
already been referred to in Section 2. Two different types
of reliability are relevant to this paper: inter-rater and test-
retest reliability.

Inter-rater reliability is the degree of agreement among
a number of annotators. Estimates of inter-rater reliability
yield a score of consensus across the answers (e.g., ratings)
of all annotators that participated in a study involving a
particular construct. In contrast, when the same annotation
task is given to the same annotator at different times, there
is a need to test whether the subject is consistent with
regards to the construct across the time instances (test-
retest reliability). Test-retest reliability is also relevant for the
thesis of this paper. Both reliability measures yield superior
results for relative (rank-based) annotation, compared to
other absolute annotation methods, as showcased by the
case studies detailed in the remainder of this section.

4.1.2 Validity
The validity of annotation labels is the degree to which
the annotation measures the phenomenon we claim it does
(in contrast, reliability measures the degree to which our
observations agree with each other). Several types of va-
lidity are available but, in this paper, we will focus solely
on empirically measured validity, defined as criterion va-
lidity. Validity in this paper is measured by the process of
cross-validation in statistics and machine learning. Cross-
validation examines the degree to which the result of a
statistical analysis on data can generalize to unseen (inde-
pendent) data. Several case studies detailed in this section,
and others in the literature showcase the superior general-
izability of ordinal approaches to modeling affect.

Other measures of validity should be mentioned. Phys-
iological measures have been used in affective comput-
ing [112] and they have an obvious appeal, because it is
easy to think of the changes that they measure as ground
truth. They certainly have a contribution to make. However,
on the standard philosophical view mentioned earlier, the
physiological changes involved in an emotion are part of
a structured whole, and it would be logically confused
to treat a measure of the part as ground truth for the
whole. An interesting alternative is also illustrated in work
mentioned earlier: it is agreement with theory. Where that

Fig. 4. AffectRank : the rank-based annotation tool introduced in [57].
AffectRank is inspired by FeelTrace but it allows the real-time annotation
of arousal and/or valence in a relative fashion. AffectRank is freely-
available at https://github.com/TAPeri/AffectRank.

has been used, it favors ordinal techniques [22]; however,
few theories are robust enough to provide that kind of test.
Both avenues are interesting for the future.

4.2 Videos

While Metallinou and Narayanan [68] and Soleymani et al.
[77] have long indicated the need of tools that would allow
for a relative annotation of videos it is only very recently
that such tools were introduced. The annotation tool named
AffectRank [57] is a freely-available, rank-based version of
FeelTrace which asks the annotator to indicate a change in
arousal and/or valence while watching a video. As seen
in Fig. 4 the annotator has 8 options to pick from (blue
circles) during annotation based on positive or negative
changes of arousal and/or valence. In that regard, the labels
obtained are discrete events (changes of arousal/valence)
in time. The evaluation study of [57] compared the inter-
rater reliability between FeelTrace and AffectRank for the
video annotation of two datasets: the SEMAINE [113] and
the Eryi game dataset. The obtained results validate the
hypothesis that AffectRank provides annotations that are
significantly more reliable than the annotations obtained
from FeelTrace (see Fig. 4). AffectRank yields superior reli-
ability even when FeelTrace ratings are treated as ordinal
data. The key findings of [57] further support the thesis of
this paper by demonstrating that the dominant practice in
continuous video affect annotation via rating-based labeling
has negative effects.

While AffectRank focuses on a first-order approach for
analyzing ordinal labels, RankTrace [114] is an affect an-
notation tool that provides a continuous trace for second-
order analysis. Similarly to Gtrace [115], RankTrace allows
for the annotation of one affect dimension at a time (see Fig.
5). RankTrace, however, does not constrain the user within
annotation bounds (e.g., within [-1, 1]) as typically prac-
ticed in affect annotation via traces, and it uses a wheel-
like hardware as a more natural means of user interfacing
with continuous annotation [116]. The labels obtained via
RankTrace are continuous unbounded time series (i.e., affect
traces). In [114] a number of players used RankTrace to an-
notate their tension levels by watching their video-captured
playthroughs of a horror game [61], [117]. During the game
their skin conductance was also measured as an estimate of
the ground truth of tension. Based on the annotation traces
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Fig. 5. The RankTrace tool introduced in [114] is inspired by GTrace
and allows participants to annotate their emotional experience using a
wheel-like controller in real-time, while watching a video. Ranktrace is
freely-available at http://www.autogamedesign.eu/software.

and the ground truth data Lopes et al. [114] compared two
types of approaches for the second-order analysis of data:
approaches that treat the trace as absolute values (mean and
integral within a time window) against relative approaches
which rely on changes in the trace (amplitude and average
gradient). Results from a rank correlation analysis show
that annotation features which assess relative annotation
changes within the window are better and more robust
linear predictors of the ground truth. Such findings suggest
that treating a continuous annotation signal in a relative
(ordinal) fashion, e.g., via the its gradient, yields features
of higher predictive capacity and, hence, validity. The core
findings of Melhart et al. [118] in the AMIGOS dataset [119]
are also in alignment with the key message of the above
studies. The ordinal transformation of SAM labels in that
study yields more accurate predictors of arousal (as elicited
through short videos) than the predictors built on classes of
SAM labels.

4.3 Face
Another domain of the ordinal approach via the use of pref-
erence learning in affective computing is in face analysis.
Baltrušaitis et al. [105] proposed to estimate the intensity
of facial action units (AUs) using rank-based methods. The
underlying assumption is that the ordinal comparison of the
intensities of AUs is more reliable than the estimation of ab-
solute scores. To establish pairwise preferences the method
considers pairwise comparisons between two images of the
same subject that in turn determine if the intensities are ei-
ther equal or different. The local ranking is then formulated
as a multi-class classification problem implemented with
SVMs (equal, lower or higher). A strength of the approach
is that the local ranking does not consider the difference
between the values of the AU intensities. Instead, it only
considers their relative order, thereby increasing the robust-
ness of the approach. The local pairwise comparisons are
aggregated to create a global score describing the intensity
of the AUs using a Bayesian model. The key results of that
study demonstrate that the framework based on local rank-
ings performs higher than other state-of-the-art methods.
The performance gain was particularly high for AUs that are
less frequent in the corpora. The experimental evaluation

also showed that the ranking method generalized better
across databases. Similar conclusions on the across-dataset
generalization capacity of ordinal over standard interval or
class labels were reached in [118], [120].

Another interesting research direction is to detect
changes in facial expression. For example, Khademi and
Morency [121] proposed to detect changes in AU within
neighboring frames. The problem was formulated as
whether the expression increased, decreased or remained
the same. The approach achieved better performance over
absolute methods, showing robustness against individual
differences.

In a similar vein, Walecki et al. [90] designed an ordinal
regression model with the aim to learn and infer jointly the
intensities of multiple AUs. The ordinal approach to AU
intensity estimation outperforms independent modeling of
AU intensities as well as the state-of-the-art classification
approaches of AU intensity estimation. Similar findings
showcasing the supremacy of ordinal analysis were ob-
tained via variational Gaussian process auto-encoders [122].
The models in that study were constructed in a supervised
manner by imposing the ordinal AU intensity labels to the
manifold.

4.4 Body
At the intersection of game-based affective interaction and
body-based affective interaction we meet a number of stud-
ies showcasing the benefits of ordinal annotation for emo-
tion detection. In particular, Kim et al. [123] used an ordi-
nal method to annotate entertainment during collaborative
child play; the derived entertainment models relied on the
non-verbal features of turn-taking and body movement dur-
ing play. Initially annotators were asked to provide levels of
engagement in a nominal fashion (low, medium, high) but
doing so resulted in poor inter-rater agreement. However,
when the annotation questionnaire considered relative lev-
els of engagement the inter-rater agreement was improved
significantly. Further a ranking-based approach for training
SVMs on the ordinal labels outperforms significantly con-
ventional SVM classification which is trained on nominal
labels. The same group in a follow up study [124] introduces
a ranking algorithm that fuses characteristics and temporal
dynamics of ranks by combining the omission probability
of each rank and the transition probability between ranks in
time. The algorithm yields even higher validation accuracies
on the task of body-based engagement detection.

Using a corpus of abstract body postures, Pasch et al.
[125] showcase that there is a high correlation between pair-
wise preference and rating labels for annotating different
affective states. As found in Yannakakis and Hallam [78],
however, there are considerable mismatches that are not
investigated further.

The study of Rienks and Heylen [126] conducted ordi-
nal annotations of dominance for small group interactions.
The analysis showed high consistency between annotators.
However, the ordinal annotations were not compared to
other alternative absolute methods.

4.5 Speech
Recent work in speech-based affect recognition has demon-
strated the benefits of using preference learning with ordinal
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labels [71], [72], [73], [93], [127]. Using time-continuous eval-
uations for arousal and valence provided by FeelTrace, the
above studies defined preferences between pairs of speech
samples and compared preference learning (via RankSVM)
against binary classification and regression for modeling
arousal and valence. The task consisted of determining
whether the value of the attribute of one sample was above
or below the median value across the corpus (i.e., median
split). This formulation applies directly to binary classifiers,
where the positive and negative classes are defined accord-
ing to the median split. For implementing regression, the
predicted scores were sorted by selecting the samples at the
top and bottom of the list. For preference learning, samples
were ranked according to the emotion attributes, selecting
samples in the extremes. The evaluation demonstrated that
preference learning provided over 10% increase in cross-
validation performance compared to the other two methods
(see Fig. 6a). The evaluation also revealed two important
observations. First, preference learning makes better use of
the training set. Even when the margin that defines a prefer-
ence is large, most of the data is still included in the ordinal
dataset. Second, the results seem to saturate for RankSVM
as the number of pairwise comparisons increases over 5, 000
in the training set. We expect that deep architectures will be
able to handle a bigger dataset, achieving better results [93],
[94].

Within the domain of speech-based emotion detection
it is worth noting that there have been attempts for devel-
oping annotation tools that consider the relative change of
the emotion’s intensity over time [128]. Some comparative
results of the use of such tools demonstrate that ordinal rep-
resentations are more reliable than nominal representations
for emotion labeling from spontaneous speech. Siegert et al.
[129] investigate contextual factors that may contribute to
the validity of the label annotations of speech and showcase
that the knowledge about past is needed to assess the affec-
tive state. In agreement with Yannakakis and Martinez [57],
they further show that the inter-rater reliability of ordinal
labels is higher than the agreement achieved with nominal
labels [86].

In another study, it was proposed to define ordinal labels
by considering trends in the time-continuous labels [72].
Each dialog is annotated by multiple evaluators creating a
trace per rater. A common observation is that these traces
are noisy with low inter-evaluator agreement. Instead of
averaging the traces across evaluators, the qualitative agree-
ment (QA) framework [12] was used to identify segments
where most of the evaluators agreed on trends (e.g., increase
or decrease in the values of the traces). This framework
leverages consistent information provided in the, otherwise,
noisy traces. The emotion annotation traces are segmented
into bins, and their average are compared creating an in-
dividual matrix per evaluator (right side of Fig. 6b). The
arrows denote increasing or decreasing trends between bins.
All the individual matrices are then combined creating a
consensus matrix with the consistent trends (left side of Fig.
6b). The core findings suggest that extracting ordinal labels
with QA provides better classifiers, increasing the accuracy
of the emotion rankers.

Other related studies have formulated speech emotion
recognition problems as detection of changes in the emo-

tional content [130], [131] and detection of deviations from
neutral patterns [106], [132].

4.6 Music and Sounds
As much as with the other types of stimuli, the emotional
intensity of music has been found to be best annotated
via ordinal approaches. The work of Yang et al. [70], [110]
is seminal in this domain of affective computing. In their
studies they used a ListNet approach [133]—that employs a
non-linear, radial basis function ANN—to learn to rank the
emotional intensity of music samples. In contrast to pairwise
preferences ListNet uses lists directly as learning instances
and attempts to minimize the deviation between the ground
truth ranking and the estimated one. The music corpora in
Yang et al. [70], [110] consisted of a large set of famous
English and Chinese pop songs and feature extraction relied
on the melody, timbre and rhythm of the songs. Affect was
annotated using both a rating and a ranking approach along
the dimensions of arousal and valence. The key findings
of these studies reveal that ranking is easier to use for
annotating songs compared to a Likert scale and that its
test-retest reliability is higher than that of rating scales. Most
importantly, the preference learning algorithms employed
perform consistently well for all datasets examined, they
are more robust with regards to parameter tuning and,
finally, they are more efficient to conventional methods (e.g.,
support vector regression) that are trained directly on the
rating labels. The benefits of the rank-based approach of
Yang et al. for music annotation have also been adopted
by recent studies that examine the modeling of emotion as
elicited by sound effects [61] and music videos [118] of the
DEAP dataset [134].

4.7 Games
The literature on the benefits of ordinal annotation in video
games is rich. Several studies have explored both first-
person and third-person ordinal annotation of playing ex-
perience and player affect. Indicatively, ordinal annotation
protocols have been explored in racing games [95], [135],
prey-predator [17], [57], [60], horror [61], and physical inter-
active games [78] among many other game genres. Most
notably for the purposes of this section, Yannakakis and
Hallam compared rating versus ranking annotations of first
person experience in both a prey predator and a physical
interactive game [78]. Their subjects were asked to use 5-
point (used in the prey-predator game) or 10-point (used in
the physical interactive game) Likert items versus a ranking
protocol to answer questions about the experience of the
games they just played. The affective states they explored
spanned from fun to frustration, to excitement and boredom.
Their key findings reveal that rater consistency (reliability)
is higher when ranking protocols are used across both
games. Further their evidence suggests that the order of
answering affects ratings more than ranks (i.e., ranks yield
higher degrees of test-retest reliability).

In another study, Martinez et al. [60] worked on the hy-
pothesis that the best way of analyzing ratings of affect is to
treat them naturally as ordinal data. To test their hypothesis
they compared models of affect that are the result of convert-
ing ratings to classes (classification) versus ordinal models
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Fig. 6. Case studies on speech: (a) improved precision at K (P@K) of RankSVM over regression (SVR) and binary classification (SVM) for arousal
[71], (b) QA framework to identify trends from emotion annotation traces [72].

x
0

1.0
0.5

0.0
0.5

1.0

x1

1.0

0.5

0.0
0.5

1.0

T
a
rg

e
t 

Fu
n
ct

io
n

0.0

0.2

0.4

0.6

0.8

1.0

(a) Ground truth

x
0

1.0
0.5

0.0
0.5

1.0

x1

1.0

0.5

0.0
0.5

1.0

M
o
d
e
l 
o
u
tp

u
t 

(C
6 5

)

0.0

0.2

0.4

0.6

0.8

1.0

(b) Classification

x
0

1.0
0.5

0.0
0.5

1.0

x1

1.0

0.5

0.0
0.5

1.0

M
o
d
e
l 
o
u
tp

u
t 

(P
9 0.
0
)

0.0

0.2

0.4

0.6

0.8

1.0

(c) PL

Fig. 7. A hypothesized (artificial) ground truth function (z-axis) which is
dependent on two attributes, x1 and x2 (Fig. 7a), the best classification
model (Fig. 7b) and the best preference learned model (Fig. 7c) [60].

that are trained directly via preference learning (second-
order analysis). They used three datasets for their analysis:
an artificial dataset, a dataset from the MazeBall game
containing physiological signals and gameplay data [99] and
the SAL [136] corpus which contained 739 1-second-long
speech segments. The main findings of their study validate
their hypothesis and further support the thesis of this pa-
per. Models trained via preference learning outperform the
classification models of affect in terms of cross-validation.
Figure 7 showcases how much closer a preference learned
model can reach a hypothesized (artificial) ground truth,
compared to a classification model.

Importantly for the thesis of this paper, Holmgaard et
al. [111] compare different types of stress annotation with
the aim of finding the best possible approximation to the
underlying ground truth. In particular they compare, in a
first-order manner, annotations indicating the most stressful
event in a game (class-based annotation) versus a rank-
based approach by which subjects compare stress across
game events. Their findings reveal that the ordinal anno-
tations are more accurate predictors of the phasic driver of
skin conductance which is assumed to be a reliable indicator
of underlying stress.

Similarly to Lopes et al. [114], Camilleri et al. [120] used
the RankTrace tool to annotate arousal across three very
different games (e.g., horror, puzzle, and shooter) and then
attempted to build general affect models across all three
games. The model was trained via preference learning on in-
game data and physiological data of the players to predict

the level of arousal in unseen games. To test for generality
the performance of the model was assessed through a form
of leave-one-game-out cross-validation. By treating the arousal
traces in a relative fashion and ranking the average gradient
value of the trace across subsequent time windows Camilleri
et al. managed to achieve a cross-game validation accuracy
which was significantly higher than the baseline. When,
instead, they treated the arousal trace in an absolute fashion
and ranked the average values of subsequent windows, the
arousal model could not surpass the baseline performance.
With this empirical evidence at hand it is safe to conclude
that the second-order processing of annotation traces as or-
dinal data not only yields more valid but also more general
models of affect. As covered earlier in Section 4.3 similar
results were obtained across datasets for general arousal
prediction [118] and for general AU intensity estimation
[105] using a local ranking approach.

4.8 A Summary

In this section we summarize the evidence solicited from the
affective computing and psychometrics literature demon-
strating the comparative advantages of the ordinal approach
with regards to both reliability and validity. The summary of
all findings is presented in a table format in which we place
the various case studies covered in this paper with regards
to the domain (or modality), the ordinal approach followed
for collecting and processing the data (first-order vs. second-
order), and the performance measure (reliability vs. validity)
upon which they show that the ordinal approach is benefi-
cial (see Table 2). It is directly observable from the table
that the ordinal approach is rather robust across domains,
performance measures and methodologies followed. While
the first-order comparative studies are currently fewer than
the studies following a second-order approach, the message
of this paper remains solid: regardless of the approach
adopted (first or second order), treating and processing data
as ordinal is beneficial for the reliability and/or validity
of the affect models. The table also suggests there is still
room for further investigation and opportunities for future
research in ordinal labeling and processing. The blank cells
of the table call for further studies and analysis.
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TABLE 2
Summary of comparative advantages of the ordinal approach

(first-order and second-order) with regards to the performances
measures of reliability and validity and across the affective computing

domains presented in this paper.

Domain Measure First-Order Second-Order
Video Reliability [57] [57]

Validity [114], [118]
Face Reliability

Validity [90], [105], [121], [122]
Body Reliability [126] [123]

Validity [123], [124]
Speech Reliability [86]

Validity [60], [71], [72], [73], [93]
Music/Sounds Reliability [70], [110]

Validity [70], [110] [118]
Games Reliability [78], [111]

Validity [60], [120]

5 OUTSTANDING QUESTIONS

Even quite recently, it seemed natural to structure an
overview of labeling round two contrasting options—the
traditional categorical descriptions, and tracing (assumed to
be interval) [7]. From a review of the relevant literatures, it
seems clear that ordinal approaches are at the very least a
strong alternative, and there is a strong case for saying that
they should be the default option. There is research from a
range of disciplines to confirm that that position is intellec-
tually well-founded, and from within affective computing
to confirm that it is technically realistic. However, a few
broad kinds of question clearly remain. There are questions
about the limitations of the ordinal approach (Section 5.1);
about the future challenges (Section 5.2); and finally about
the intellectual status of the approach—whether it is simply
a matter of solving technical problems, or bears on questions
of general intellectual interest (Section 5.3).

5.1 Objections
The first broad question is whether obvious objections can
be answered. A few key cases are worth considering.

More Must Be Better: It is natural to assume that the
more information labelers’ responses contain, the better they
will specify the relevant impression. However, the exact
opposite is what emerges from all the material presented in
this paper—studies in affective computing, evidence from
other disciplines, and psychological theorizing about the
nature of emotions: it appears that less is more. Trying
to achieve absolute annotation is adding noise rather than
valid information. A specific concern is that relative descrip-
tions cannot capture the intensity of an emotion, only its
relation to a comparator. However, the paper has presented
evidence that given appropriately chosen comparators, the
intensity is not lost. Functions that model affective ranks
(e.g., a preference learned neural network [60], [94]) can
directly output intensity values. That links to the next ob-
jection.

Anchors: Ranking procedures require at least one ref-
erence point. The need to provide a reference point adds
practical work; and theoretically, results can only be rel-
ative to it. We argue that far from being a problem, the
introduction of explicit reference points is a major strength.

The theoretical background discussed earlier indicates that
whether or not they are explicit, baselines play an integral
part in any type of reporting scheme. It is a major attraction
of comparative procedures that this reference to baselines
is not left to unconscious and uncontrolled adjustments.
Instead, the baseline is a real option that is used as a
reference during the annotation. Once again, what appears
to be a limitation actually encapsulates a core strength.

Ipsative Nature: Comparative measures in some con-
texts are described as ipsative—that is, the scale is peculiar
to the individual. So, for instance, the worst one person has
experienced may be far from the worst that another has; and
what is worse for one may not be worse for another. Issues
like that are said to make comparison across individuals
impossible. Again, what matters is that ordinal methods
help to bring real issues into the open, rather than give a
misleadingly reassuring impression. Once in the open, they
can be addressed. The first of the issues raised is dealt with
in the way that was just mentioned, by providing anchors.
The second is addressed by measuring reliability. Testing
reliability indicates that the comparisons are less ipsative
than the hidden transformations that labelers use to map
their internal experiences onto an apparently objective scale.

Exponential Growth: An obvious limitation of methods
based on pairwise comparisons is that the number of pos-
sible comparisons increases as the square of the number of
stimuli. This, in turn, limits the usability of the method for
large sets of stimuli. The issue is a real one, but the literature
has proposed several protocols and algorithmic approaches
that reduce the number of comparisons required for a result
to be valid. Indicatively in Li et al. [35] the full paired
comparison method was compared against pair comparison
selection algorithms in the task of assessing visual discom-
fort. The adaptive square design method introduced in Li
et al. [35] reduces the number of comparisons substantially
while providing accurate and robust results against observa-
tion errors and interdependence of comparisons. See Section
3.3.3 for further discussion on this issue.

Cognitive Load and Completion Time: Ranking ques-
tions can be cognitively demanding. The amount of con-
centration required by the respondent is directly linked
to the number of options to order. The time it takes for
an annotator to answer a ranking question is also directly
proportionate to the number of options that need to be
ordered or ranked [137]. Again, though, there are efficient
methods. Studies have shown that if respondents are pre-
sented with a short question, given a predefined set of
possible answers, and are asked to rank their top n (n is
usually 3 or 5) answers, the validity of ranking responses
reaches the highest possible value [138].

Statistical Analysis: Using ordinal data restricts the
statistical methods that can be used. Standard descriptive
statistics such as mean values and standard deviations
are not applicable. Parametric tests are not applicable ei-
ther. Part of the answer is that multiple data visualization
methods and data processing techniques are available for
handling preferences and ranks, from classical correlation
analysis, to statistical tests for significance, and further
to modern machine learning approaches. Several of these
methods have been covered in the paper (Section 3.3). The
other part is that yet again, this is about exposing an issue
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that ought to be faced rather than covered up. If familiar
analytic techniques do not fit emotion, then it is misguided
to insist on descriptive techniques that make it look as if
they do.

5.2 Challenges
Certainly objections can be put in different ways, but these
seem to cover most of the issues that recur. Outright objec-
tions should be separated from the second broad question,
which is whether there are outstanding challenges that
require work. A few can be pointed out reasonably easily.

Segmentation: Comparative techniques highlight the
problem of finding appropriate units to compare. Most
obviously, simply ranking extracts will not reveal whether
some show high internal variation; and if there is significant
variation within an extract, there will be parts that its
rank does not describe at all well. Using short extracts can
minimize that problem, but it deprives labelers of context
that may be crucial. The hope that tracing techniques might
avoid those issues was one of their attractions [7]; but in
the event, emotional variation is precisely where they are
weakest (see Section 2). There are various approaches to
finding appropriate units. In the speech modality, there is
long-standing interest in prosodically defined units [139]. In
the visual modality, more recent work has used expressive
patterns to identify informative regions [140]. It underlines
the complexity of the issue: for instance, different parts of
the face show different timecourses [141]. The immediate
bearing of those issues is on temporal resolution. It is an
area where there is a great deal to be learned, but again, that
is a general problem: ordinal techniques highlight the fact
that it is genuinely challenging.

It is natural to believe that the higher reliability of
ordinal approaches is due to their lower resolution; at least
compared to higher resolution interval values. When it
comes to temporal segmentation of continuous annotation,
for instance, time intervals should be adapted if ranks are
to be compared against ratings [142]. While the resolution
of discrete ranks versus continuous absolute values can be a
valid concern there exist accurate and appropriate methods
for comparing the two via standard windowing methods.
An empirical approach is to attempt different time resolu-
tions and compare the reliability obtained with ranks (first-
order), with ordinal labels that are obtained through inter-
vals (second-order) and with interval values (e.g., traces)
directly. Statistical methods such as Krippendorff’s α [85]
can be used to compare the reliability across different data
types as, for instance, performed by Yannakakis and Mar-
tinez [57]. That comparative study showcased the inter-
rater reliability gains of both first-order and second-order
processing of continuous video annotations over standard
continuous annotation (ratings). Our message in this paper
is that whether an annotation tool allows for first-order ordi-
nal labels (e.g., AffectRank) or not (e.g., FeelTrace), following
the ordinal path of data processing can be beneficial for the
reliability of the labels obtained. It is also important to note
that our thesis stands for any type of annotation (discrete
or continuous) and for any type of domain as showcased
through the several case studies covered in Section 4.

Efficient Algorithms: At first sight, efficiency appears
to be a severe problem for comparative approaches. It is

already clear that the worst fears are avoidable (see Section
3.3). However, psychophysics, dealing with related prob-
lems, makes considerable efficiency gains by using methods
that take advantage of “the experimenter’s prior knowledge
and the observer’s responses on past trials” to determine
what is presented next [143]. It remains to be seen whether
similar gains can be made here. Another layer of questions
about efficiency comes into play when we consider the issue
of segmentation (if the number of segments can be reduced,
it should be). Overall, identifying optimal methods remains
an interesting challenge.

Validation: It is a feature of ordinal data that a great
variety of specific techniques, first- and second-order, can be
used to obtain it (see Section 3.2). There is an obvious case
for work that establishes how they compare. In particular,
there is a need to study comparative validity (see Section
4.1): that is, to identify the techniques most likely to yield
results that allow systems trained on them to function as
they should.

5.3 Intellectual Views
The third broad question remains. Most of the focus in
this paper has been on technical means to satisfy a practical
end—providing training material. The question is whether
there is any deeper intellectual reason to be interested in the
area.

Learning the Language of Emotion: The general answer
is that research in the area is linked to a question that is
deep, and long-standing; and that affective computing may
have a particular role in answering. The question is where
ordinality enters the picture of emotion.

One possibility is that ordinality is relatively superficial.
It is a product of the way people go about externalizing
underlying experiences which, in and of themselves, are
marked by straightforward numerical parameters (such as
intensity, valence, goal conduciveness, etc). If that is the
case, then effects involving ordinality are mostly of technical
interest: they tell us about reporting emotion rather than
emotion itself. Some of the evidence that was mentioned
invites that interpretation [29].

The other possibility is that ordinality goes to the core of
emotion. Salient aspects of an experience (such as valence,
intensity, etc.) are defined by the place that an underlying
representation of the situation occupies relative to a range
of comparators that are active at the time. As Section 2
indicated, accounts of that kind are not eccentric: related
ideas have been proposed in many areas. If that is the
case, then it is important for understanding human beings;
and affective computing has a particular role in developing
the idea. The reason is that it is hard to imagine how the
idea could be consolidated without sophisticated modeling.
Affective computing has the means to carry out that kind
of modeling, and the motive: it is basic to reconstructing
emotional experiences from what people say about them.

Deciding between those possibilities is not a technicality.
It is not far-fetched to say that it is about unraveling the
underlying language of emotion.

6 CONCLUSIONS

This paper has presented and supported the thesis that emo-
tions are by nature ordinal. We do not claim that it is a novel
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thesis. On the contrary, we have taken pains to show that it
reflects established ideas in many literatures—psychology,
philosophy, neuroscience, behavioral economics, marketing
research, artificial intelligence and, not least, affective com-
puting. Our fundamental aim is to make it clear that this
is not a fringe issue. Attempts to work with interval or
categorical annotation, including our own, have shown that
problems we knew in principle do not turn out to be unim-
portant in practice. The cumulation of evidence says that
it makes sense to look in a concerted way at the alternative
that various teams, including our own, have been exploring.
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