
S. I : NEURAL NETWORKS IN ART, SOUND AND DESIGN

Deep learning for procedural content generation

Jialin Liu1 • Sam Snodgrass2 • Ahmed Khalifa3 • Sebastian Risi2,4 • Georgios N. Yannakakis2,5,6 •

Julian Togelius2,3

Received: 14 May 2020 / Accepted: 23 September 2020 / Published online: 8 October 2020
� Springer-Verlag London Ltd., part of Springer Nature 2020

Abstract
Procedural content generation in video games has a long history. Existing procedural content generation methods, such as

search-based, solver-based, rule-based and grammar-based methods have been applied to various content types such as

levels, maps, character models, and textures. A research field centered on content generation in games has existed for more

than a decade. More recently, deep learning has powered a remarkable range of inventions in content production, which are

applicable to games. While some cutting-edge deep learning methods are applied on their own, others are applied in

combination with more traditional methods, or in an interactive setting. This article surveys the various deep learning

methods that have been applied to generate game content directly or indirectly, discusses deep learning methods that could

be used for content generation purposes but are rarely used today, and envisages some limitations and potential future

directions of deep learning for procedural content generation.

Keywords Procedural content generation � Game design � Deep learning � Machine learning � Computational and artificial

intelligence

1 Introduction

Deep learning has powered a remarkable range of inven-

tions in content production in recent years, including new

methods for generating audio, images, 3D objects, network

layouts, and other content types across a range of domains.

It stands to reason that many of these inventions would be

applicable to games. In particular, modern video games

require large quantities of high-definition media, which

could potentially be generated through deep learning

approaches. For example, promising recent methods for

generating photo-realistic faces could be used for character

creation in games.

At the same time, video games have a long tradition of

procedural content generation (PCG) [132], where some

forms of game content have been generated algorithmically

for a long time; the history of digital PCG in games

stretches back four decades. In the last decade and a half,

we have additionally seen a research community spring up

around challenges posed by game content generation

[16, 93, 112, 129, 133, 134, 148]. This research community

has applied methods from core computer science, such as

grammar expansion [22]; AI, such as constraint solving

[115] and evolutionary computation [7, 133]; and graphics,

& Julian Togelius

julian.togelius@nyu.edu; julian@togelius.com

Jialin Liu

liujl@sustech.edu.cn

Sam Snodgrass

sam@modl.ai

Ahmed Khalifa

ahmed.khalifa@nyu.edu

Sebastian Risi

sebr@itu.dk

Georgios N. Yannakakis

georgios.yannakakis@um.edu.mt

1 Guangdong Provincial Key Laboratory of Brain-inspired

Intelligent Computation, Department of Computer Science

and Engineering, Southern University of Science and

Technology, Shenzhen, China

2 Modl.ai, Copenhagen, Denmark

3 New York University, New York, USA

4 IT University of Copenhagen, Copenhagen, Denmark

5 Institute of Digital Games, University of Malta, Msida, Malta

6 Technical University of Crete, Chania, Greece

123

Neural Computing and Applications (2021) 33:19–37
https://doi.org/10.1007/s00521-020-05383-8(0123456789().,-volV)(0123456789().,- volV)

http://orcid.org/0000-0001-7047-8454
http://crossmark.crossref.org/dialog/?doi=10.1007/s00521-020-05383-8&domain=pdf
https://doi.org/10.1007/s00521-020-05383-8

such as fractal noise [24]. But only in the last few years

have we seen a real effort to bring the tools of deep

learning to game content generation.

Deep learning brings new opportunities and leads to

exciting advances in PCG, such as generative adversarial

networks (GANs) [32], deep variational autoencoders

(VAEs) [63] and long short-term memory (LSTM)

[34, 45]. However, those methods for other generative or

creative purposes are not always applicable to games and

need certain adaptations due to the functionality criteria of

different game content. Methods for generating images

(e.g., generative networks) can be used to generate image-

like game content (e.g., level maps, landscapes, and

sprites). However, the generated levels should be playable

and require specific gameplay skill-depth. The generated

sprites should imply specific character or emotion, as well

as coherence within the game. Training reliable models

requires a necessary amount and quality of data, while the

available data of content and playing experience for most

games are limited. Careful consideration and sophisticated

design of adaptation techniques are requisites for applying

deep learning methods to generate game content.

It is important to note that content generation has uses

outside of designing and developing games for humans to

experience. In addition to creating content in games meant

for humans to play, content generation can also play a

crucial role in creating generalizable game-based and

game-like benchmarks for reinforcement learning and

other forms of AI [26, 136].

This article surveys the various approaches that have

been taken to generate game content with deep learning

and also discusses methods proposed from within deep

learning research that could be used for PCG purposes.

First, we give an overview of types of game content that

could conceivably be generated by deep learning, including

the particular constraints and affordances of each content

type and examples of such applications (if they exist),

followed by an overview of applicable deep learning

methods.

2 Scope of the review

This article discusses the use of deep learning (DL)

methods, here defined as neural networks with at least two

layers and some nonlinearity [33], for game content gen-

eration. We take an inclusive view of games as any games

a human would conceivably play, including board games,

card games, and any type of video games, such as arcade

games, role-playing games, first-person shooters, puzzle

games, and many others. Several other surveys and over-

views of PCG in games already exist. Here, we delineate

the scope of our article by comparing it to existing books

and surveys in Sects. 2.1 and 2.2. Section 2.3 describes our

paper selection methodology.

2.1 Related work

A number of books and surveys of PCG with different

focuses and aims have been published in the past two

decade [16, 93, 112, 129, 133, 134, 148]. The two text-

books for PCG [112] and Game AI [148] cover the search-

based methods, solver-based methods, constructive gener-

ation methods (such as cellular automata and grammar-

based methods), fractals, noise, and ad-hoc methods for

generating diverse game content. De Kegel and Haahr [16]

reviewed the PCG methods for eleven categories of puz-

zles, but few work based on deep learning has been

reported. The article by Togelius et al. reviews the search-

based PCG methods, defined as using meta-heuristics to

search in a predefined content space, not necessarily rep-

resented by the same format of the content itself, and

automatically generate new content [133]. The search is led

by a fitness or evaluation function which measures the

quality or playability of the generated content. The expe-

rience-driven PCG framework [147] largely adopts a

search-based approach and reviews ways in which algo-

rithms can generate content for adjusting the player expe-

rience. Most of the reviewed search-based methods in both

survey papers rely on evolutionary algorithms. In this

article, we also cover some search-based methods which

cooperated with deep learning methods for generating

content. The most famous example may be latent variable

evolution [5]. Risi and Togelius [93] focuses on PCG for

applications in Reinforcement Learning (RL), while the

work based on RL methods reviewed in this article mainly

used RL agents to play the generated levels, which indi-

rectly served as content evaluators. Khalifa et al. [62]

models the level generation as an iterative process that one

needs to edit the levels to meet certain requirements or

achieve some specific goals. RL agents need to learn to

generate levels through this iterative process. The study of

Summerville et al. [129], published in 2018, reviews the

PCG via Machine Learning (PCGML) methods, building

on e.g. Markov chains (e.g., [118–120, 131, 152]),

n-grams (e.g., [14]), and Bayes nets (e.g.,[37]), whereas

we will focus exclusively on deep learning in this article.

2.2 Novelty of the review

The differences between the current article and the

PCGML survey [129] is that (i) our article focuses on DL-

based methods, defined at the beginning of Sect. 2

(although other techniques will be mentioned for contrast);

(ii) our article surveys more types of game content, such as

narrative text and graphical textures; (iii) we also discuss

20 Neural Computing and Applications (2021) 33:19–37

123

applications of deep learning to support PCG, such as for

content quality prediction; and (iv) our survey is written

more than three years after the PCGML survey was first

submitted and two years after it was published, during

which time an avalanche of new work in the field has

appeared.

During the two years after the publication of [129], PCG

via deep learning has been growing quickly and a signifi-

cant number of papers and articles have been published.

The trend was mainly set by latent variable evolution [5] in

2018. A review of the state-of-the-art and the latest

applications of deep learning to PCG is needed.

2.3 Paper collection methodology

To collect the related papers published or online since

2018, till end of August 2020, we have searched with

Google Scholar and Web of Science using the following

search terms (‘‘game’’) AND (‘‘design’’) and (‘‘game’’)

AND (‘‘procedural content generation’’ OR ‘‘pcg’’), sepa-

rately. We systematically went through the returned papers,

most of which were publications in the IEEE Transactions

on Computational Intelligence and AI in Games (T-

CIAIG), the IEEE Transactions on Games (ToG), in the

proceedings of the IEEE Conference on Computational

Intelligence and Games (CIG) series, the IEEE Conference

on Games (CoG) series, the International Conference on

the Foundations of Digital Games (FDG) series, the Arti-

ficial Intelligence for Interactive Digital Entertainment

(AIIDE) Conference series and their related workshops, as

well as special sessions at other conferences, such as the

IEEE Congress on Evolutionary Computation (IEEE CEC).

We also went through the papers that have been recently

accepted in 2020 by the conferences mentioned above.

Only work that involves direct or indirect use of DL-based

methods for generating game content or evaluating content

or content generators are reviewed in this article, while the

ones being returned due to citations with the search terms

but are out of our scope are not included.

3 Content types

Generally, game content can be distinguished from the

content meant for non-interactive media by various forms

of functionality constraints. Video, images, and music all

require coherence, and in general that aesthetic suffers

when the coherence fails. For example, GANs can often

create images that are locally convincing but globally

incoherent, such as a side-view of a car where the front

wheels have a different size and style to the back wheels.

This may be annoying to the human viewer, but the image

still unmistakably depicts a car; it doesn’t turn into a blur

of random pixels just because the wheels on the car don’t

match. In contrast, when generating a game level, if the

final door has no matching key the level is unplayable; the

level’s utility as content is not just slightly diminished, but

essentially zero (unless manually repaired). Making a

neural network learn to produce only functional content is

often a tall task, and is one of the core challenges of using

deep learning for PCG. Not all types of game content have

the same extent of functional constraints however, and

some offer affordances that may make content generation

relatively easier. Also, not all content is necessary;

depending on the game’s design, there might be artifacts

that are allowed to be broken, as the user can simply dis-

card them and select others. Weapons in Borderlands are a

good example of optional content.

3.1 Game levels

The most common type of content to generate in games is

levels. These are spaces in two or three dimensions that

need to be traversed. Typically, these are necessary rather

than optional and have strong functional constraints that

require them to be playable. For example, there cannot be

impassable geometry (such as gaps or walls) blocking

traversal of the level, items needed to finish the levels must

be present, and enemies cannot be unbeatable. 2D, side-

scrolling platform games is a genre where procedural

generation is particularly common, both in entertainment-

focused games (in particular indie games) and in academic

research. Among the former, the standout game Spelunky

has defined a way of building 2D platform games around

PCG; among the latter, the Mario AI Framework [135],

built around an open-source clone of Super Mario Bros, has

been used in so many research projects that it could be

called the ‘‘drosophila of PCG research’’. Another type of

commonly attempted 2D level is the rogue-like or dun-

geon-crawler level, where the objectives and constraints

are similar to the platform game level, but which are

viewed from the top down so physics works differently.

Related to this are levels for first-person shooters. Another

kind of 2D level is the battle map, used in strategy games

such as StarCraft or player-versus-player modes of first-

person shooters. While such maps also have ‘‘hard’’ con-

straints, such as sufficient room for the players’ bases, there

are also the softer constraints of balancing; many features

contribute to the quality of battle maps, but balancing is

paramount.

Levels for music games, such as Guitar Hero or Dance

Dance revolution, can be seen as 2D levels as well. Here

the player is automatically moved along the level and has

to carry out certain actions in time with the music, as

prompted by level features. Some interesting work has

Neural Computing and Applications (2021) 33:19–37 21

123

been done on learning to create such music game levels

from existing music (e.g., [21, 139]).

3.2 Text

Almost all games include some form of text, and typically

they use text to convey narrative. This text typically has

very strong constraints, as it needs to be truthful with

regard to what happens in the game. For example, if the

text says that the King lives in Stockholm, this must

actually be the case lest it misleads the player. Tradition-

ally, generative text in games has not been very ambitious

and used simple text substitution or grammar-based

approaches. Outside of games, deep learning has made

great strides with LSTM networks [34, 45] and, more

recently, transformers able to generate coherent and

stylistically relevant text. However, these methods are not

easy to integrate into most games because of the lack of

control over deep learning-based text generators. However,

games such as AI Dungeon 2 have managed to build

gameplay on top of almost uncontrollable text generation.

3.3 Character models

Faces and character models are examples where deep

learning has advanced content creation capabilities radi-

cally in recent years, but these methods have generally not

made their way into games. Datasets of thousands of real

human faces, such as the Celeb-A dataset [75], have

become standard benchmark for developing new GAN

variations, leading to some impressive breakthroughs in

face generation. While many games have a need for (hu-

man) faces in various roles, including for freshly generated

NPCs, the character design feature of role-playing games is

a standout application case for controllable PCG, where

machine learning-based methods have yet to make their

mark. Depending on the features of the game, these faces

or models might need to be animatable, so that they can

produce believable movements or facial expressions.

3.4 Textures

Textures are used in almost all 3D games, and is perhaps

the type of content that has the fewest functionality con-

straints. Procedural methods such as Perlin Noise [24, 89]

have been used for texture generation in games since the

birth of commercial 3D games with DOOM. Deep learning

methods for texture generation could provide a viable

alternative in this case.

3.5 Music and sound

Most games feature a soundtrack, often composed of both

music and sound effects. The constraints on the soundtrack

tend to be relatively soft compared to other types of content

constraints; the sound effects should be appropriate to the

actions in the game at any given moment, and the music to

the emotional tone of the moment, but inappropriate sound

does not necessarily break the game. Quite a few games

involve some kind of procedural soundtrack, and some

research projects have focused on music generation able to

adapt to affective shifts in real-time [106]. At the same

time, deep learning has made impressive strides in learning

to generate music with some modes of controllability [18],

but we have yet to see the use of deep learning methods for

sound generation in games.

4 Training methods and neural
architectures of DLPCG

Due to the different types and roles of content in games,

diverse deep learning methods have been adapted for PCG.

In this section, we present different ways to apply deep

learning for PCG systems, the target content, and their

generality. The approaches are categorized by the type of

machine learning method used for training. Additionally,

works combining evolutionary computation techniques to

deep learning methods are also presented. The works

reviewed in this section are summarized in Fig. 1, cate-

gorized by the content types and deep learning methods.

Generating different types of content often requires

different types of neural architectures. In the use cases

reviewed in Sects. 4.1 and 4.2, LSTMs are mostly used for

time-dependent sequential data (e.g., action sequences,

agent paths, charts for rhythm) and language models, while

convolutional neural networks are often used for any type

of image-like content. A very popular class of architecture

for content generation are GANs [32]. A GAN consists of

two networks, a generator and a discriminator that are

trained iteratively to allow the generator to create more

realistic content, while the discriminator is getting better at

distinguish generated content from real data.

4.1 Supervised learning

Supervised learning (SL) methods have been used in a

variety of ways for content generation. Often as a predictor,

SL models predict the gameplay outcomes of games with

the generated content, either for evaluating the quality of

content or for meeting specific preferences (such as game

22 Neural Computing and Applications (2021) 33:19–37

123

style, image style and color) or adapting the generated

levels to desired skill-depth.

The study of Summerville et al. [127] extracted player

paths in Mario from gameplay videos and used them to

annotate training levels. Then, separate LSTMs are trained

on levels annotated with different players’ paths in order to

generate personalized levels based on the players’ chosen

paths [127]. Then, Guzdial et al. [40] trained a random

forest on expert-labeled design patterns from Mario levels

(i.e., small sections of levels given descriptive class labels)

to classify level structures and an autoencoder with level

structures and labels as input to generate new instances of

those design patterns.

Karavolos et al. [57] trained a CNN to predict the out-

comes of a simplified 3 versus 3 multiplayer deathmatch

shooter game to evaluate and determine whether the levels,

represented by maps and weapon parameters, are balanced

or favor a team. Based on the outcome predictor from [57],

Karavolos et al. [58] further designed a DL surrogate

model for pairing levels and character classes for desired

game outcomes.

Tsujino and Yamanishi [139] represented rhythm-based

video game levels by charts and implemented Dance Dance

Gradation (DDG), a system with LSTMs trained on levels

of different degrees of difficulty to generate new levels.

DDG can tune the difficulty degree of generated charts by

changing the fractions of easy or hard charts used to

compose the training dataset [139]. Liang et al. [67] used

C-BLSTM [105] to generate levels of rhythm games,

represented by actions and corresponding timing, of dif-

ferent difficulties, trained on the beatmaps collected from

OSU!, a famous rhythm game.

Beside considering skill-depth required in game levels,

the emotion sent by content has also been studied. Guzdial

et al. [38] studied the emotion shown by the game visuals,

such as abstract texture, color of game maps and scene,

including the visual effects, and trained a CNN to generate

textures for some given target emotion.

Soares and Bulitko [123] trained a VAE [63] to classify

NPC behaviors to Leaders, Followers, and Random, in a

simple artificial life environment. Sirota et al. [114] trained

two RNNs, a speaker and a listener, by playing a referential

game with concepts and human-generated annotations to

design communication systems for NPCs in games.

4.2 Standard unsupervised learning

Most unsupervised learning (USL) techniques in PCG

focus on learning a representation of all the content and

then sample new content from this representation. For

example, using autoencoders to learn to replicate game

levels. Another direction usually taken is transforming the

data into a sequence and use unsupervised learning to learn

the relation between these elements similar to Markov

Chains relations. For example, learning from a text corpus

how to predict the next word based on the previous ones.

Summerville and Mateas [126] trained LSTMs on Mario

levels annotated with agent paths by representing the 2D

SL USL RL AL EC
0

5

10

15

20
N
um

b
er

of
pa

p
er
s

2D Map/Level 3D Map/Level Rhythm
Narrative Texture Music

Face & Character Card & Deck Other

[127] [57]

[58] [40] [39]

[126] [69] [54] [96]

[15] [99] [121]

[100] [97] [146]

[62] [41] [23]

[4] [17] [84]

[103] [104] [137]

[36] [84] [141]

[64] [113] [4] [20]

[20] [29] [3] [65]

[49] [94] [44]

[140] [84] [36]

[77] [52] [103] [104]

[145] [31] [85] [143]

[59] [71]

[139] [67]

[114]

[142],[2]

[38] [150]

[25]

[21]

[27] [50]
[83]

[107] [48] [55]

[69]
[130]

[10]

[151]

[23]

[50]

Fig. 1 This figure shows the distribution of research by methods and content types. We notice the disproportionately large amount of work on 2D

level and map generation compared to all other content types

Neural Computing and Applications (2021) 33:19–37 23

123

levels as one-dimensional strings of tiles. Jain et al. [54]

trained autoencoders on sliding-window segments of Super

Mario Bros levels, which were represented by 2D arrays, to

generate and repair levels. Jain et al. [54] considered a tile

as being empty or occupied, but has inspired many follow-

up investigations. Blending has lead to new and creative

game levels. Sarkar and Cooper [96] trained separate

LSTMs on two different game domains (Mario and Kid

Icarus) and generated new blended level sections with

alternating generators. Sarkar et al.[99] further explored

generating blended levels by training variational autoen-

coders and GANs on Mario and Kid Icarus, and generating

new blended level sections that interpolate between the

domains using the latent vectors. Snodgrass and Sarkar

[121] also used VAEs to model and generate platformer

level structures which was finished by using a search-based

approach to blend details from several other games. Sarkar

et al. [100] explored two variants of VAEs (linear are

GRU) for blending platforming game levels and associated

paths in those levels. Sarkar and Cooper [97] trained VAEs

to learn a sequential model of level segment generation and

a random forest classifier to determine the exact location of

a newly generated segment to the previous segment (an

ancestor). The resulted levels are not only more coherent

[97], but also more creative [98] because of the changing

altitude of platformer and various possible heading direc-

tions. Yang et al. [146] trained Gaussian Mixture VAE to

learn relation between game level segments from various

games (Super Mario Bros, Kid Icarus, and Megaman) and

later be able to generate level segments that follow a cer-

tain distribution/style. Davoodi et al. [15] trained an

autoencoder to repair manually designed levels for differ-

ent games by re-iterating it over the decoder while using a

trained discriminator from a GAN model to determine the

stopping criteria. Besides levels, autoencoder has also been

used to generate 3D shapes [151].

Moreover, USL methods for image generation have also

been applied to generating sprites and characters in games.

The recent work by Mordvintsev et al. [83] learned cellular

automata (CA) to imitate the development of organism and

generate images, represented by 2D grids of cells. A cell is

similar to the tile considered in the MarioGan [140] (ex-

plained later in Sect. 4.5). A cell contains a cell state (e.g.,

a discrete value or a vector of RGB values), while a tile

contains a discrete value which refers to an object type or

part of it.

Applications of USL methods to content generation for

card games and text adventure games have also been

investigated. An example is [130]. Summerville and

Mateas [130] trained encoding and decoding LSTMs on

Magic: The Gathering cards, represented as sequences of

tokens corresponding to the important information on the

cards (e.g., mana cost, effect, power, etc.). The LSTMs

were trained on corrupted versions of the cards, and

encoded cards were used as input to the decoder at gen-

eration time. Another example is the endless text adventure

game AI Dungeon 21 (earlier version as AI Dungeon). AI

Dungeon 2 is built on OpenAI’s GPT-2 model [92], a 1.5B

parameter Transformer, and fine-tuned on some text

adventures obtained from https://chooseyourstory.com,

according to its developer Nick Walton [142]. In a game, a

player can interact with the game by inputting text com-

mands, and then the AI dungeon master will generate

content of the game environment (updates in the game

story) according to the commands and provide text feed-

back. By doing so, each player can build his/her own

unique game story. Ammanabrolu et al. [2] focused on

procedurally generating interactive fiction worlds and

proposed AskBERT to construct knowledge graph. Ask-

BERT extracts objective information in the game worlds,

such as characters and objects, via question-answering

model. Ferreira et al. [27] proposed Bardo Composer, a

system that automatically composes music for tabletop

role-playing games. In Bardo Composer, a BERT model

cooperates with a stochastic bi-objective beam search

model to identify music emotion, and then generate music

pieces that reflects the identified emotion.

4.3 Reinforcement learning

Using reinforcement learning (RL) for PCG is a very recent

proposition which is just beginning to be explored. Here,

the generation task is transformed into a Markov decision

process (MDP), where a model is trained to iteratively

select the action that would maximize expected future

content quality. This transformation is not an easy task and

there is no standard way of handling it.

One of the early projects that uses RL is by Chen et al.

[10]. They used a small network of one hidden layer to

generate a hearthstone deck of cards that can beat a specific

other deck given a certain player. The agent can modify the

current deck by substituting any of its cards with a different

one. The goal is to maximize the win rate of the playing

agent using the current deck against a predefined deck.

Earle [23] used RL to play the game of SimCity (Maxis,

1989). They used a fractal network (convolutional network

with structured skip connections) as their network archi-

tecture and optimized it toward increasing the city popu-

lation. At each step, the agent can change any space on the

map to any other type. This project is a borderline example

of PCG. The aim of the project was to play the game of

SimCity where the trained agent will learn to be a city

planner/generator.

1 https://github.com/AIDungeon/AIDungeon.
2 https://github.com/amidos2006/gym-pcgrl.

24 Neural Computing and Applications (2021) 33:19–37

123

https://chooseyourstory.com
https://github.com/AIDungeon/AIDungeon
https://github.com/amidos2006/gym-pcgrl

As we can see, most of the RL PCG requires an adap-

tation for the input to be able to be used during generation.

Khalifa et al. [62] introduced a framework2 for 2D level

generation using RL. The generation process is framed as

an iterative process where at every step the generator

modifies the level toward certain goals (based on the cur-

rent generation problem). They proposed 3 main transfor-

mations: Narrow, Turtle, and Wide. These transformations

focus on the different ways that the generator controls

where it is modifying. Figure 2 shows examples of the

generated levels over three different problems using trained

agents in the PCGRL framework.

4.4 Adversarial learning

Adversarial learning (AL) models are perfect for generat-

ing content represented by pixel-based images or 2D array

of tiles, such as levels as a map, landscapes and sprites. The

most popular model among the reviewed works would be

GAN [32] and its variants.

2D levels of most arcade games can be simplified as 2D

arrays of tiles, where each tile contains a type of object or

part of an object. Examples include the levels designed

using Video Game Description Language (VGDL) [101] in

the General Video Game AI platform [87, 88], and the tile-

based levels in the Mario AI framework [110]. As shown in

the top-left of Fig. 4, each tile contains a type of object or

part of it, such as ground, pipe, empty and enemy, repre-

sented either by a symbol or an integer. Kuang and Luo

[64] implemented an interactive map designing system

using different generative models to generate 2D maps,

which can be further extended to 3D scenes. Torrado et al.

[137] designed a new GAN architecture, Conditional

Embedding Self-Attention GAN (CESAGAN), to tackle

the low quality and diversity issue of generated 2D levels

by traditional GANs, and increased the amount of training

data to CESAGAN with a bootstrapping technique. They

applied their technique to Zelda, a dungeon crawler game

from GVGAI [87].

To facilitate the input form for generative models, such

as GANs, 3D landscapes are often converted to 2D height

map. Wulff-Jensen et al. [145] trained a deep convolutional

GAN (DCGAN) on digital elevation maps sampled from

the Alps dataset to generate 2D height maps as input to

Unity for creating 3D landscapes for video games. Gia-

comello et al. [31] converted each 3D DOOM level to

several 2D images, among which a HeightMap was used to

indicate the 3D information and other were top-down

images of the corresponding level. In [31], two GANs were

trained on human-designed levels, one of which took plain

2D images as input and the other used both the images and

some of the extracted features. Park et al. [85] trained a

multistep DCGAN, adapted from [140], to generate levels

of an educational game, ENGAGE. The levels were rep-

resented by a 2D array of tiles, from a top-down view,

during training and creation, and then converted to 3D

levels to be used in the game [85]. Volz et al. [141]

explored the use of GANs in the context of match-3 levels,

attempting to model the local and global structures of those

levels. Awiszus et al. [3] proposed token-based oneshot

arbitrary dimension generative adversarial network

(TOAD-GAN), adapted from SinGan [108], trained on a

single sample level, to generate tile-based levels. In the

work using GANs for level generation that have been

reviewed so far, game levels are tackled as image only

during training, while the constraints for validating levels

are not considered at all. Recently, Di Liello et al. [20]

presented constrained adversarial networks (CANs) which

encourages the generator to learn to generate valid levels

by penalizing it due to invalid structures generated during

training. But still, these methods generate individual seg-

ments of platformer levels separately and then combine

them together randomly or according to some increasing

level difficulty [140]. Different from above work, Fontaine

et al. [29] proposed latent space illumination (LSI), which

uses quality diversity algorithms, such as Covariance

Matrix Adaptation MAP-Elites (CMA-ME) [28], to search

the latent space of trained generators, aiming at increasing

the diversity of generated levels. A recent work by

Kumaran et al. focused on generating levels in multiple

distinct games. Instead of training several GANs for these

games separately, a novel GAN architecture, composed of

a branched generator and multiple parallel discriminators,

was proposed [65].

(a) Binary (b) Zelda (c) Sokoban

Fig. 2 Generated examples from three different problems using

PCGRL environment introduced by Khalifa et al. [62]

2 https://github.com/amidos2006/gym-pcgrl.

Neural Computing and Applications (2021) 33:19–37 25

123

https://github.com/amidos2006/gym-pcgrl

Besides generating 2D and 3D levels represented as

pixel-based or tile-based images, texture [25] and sprite

generation [48] have also been investigated. Hong et al.

[48] generated 2D image sprites using a multi-discrimina-

tor GAN, in which two encoders were used for bone graph,

shape and color, without sharing parameters. Additionally,

two discriminators, one for shape and the other for color,

were used in [48] to generate sprites’ skeletons and color,

respectively. Another potential application is GAN-based

character generation [55] for video games, such as The

Sims (Maxis, 2000). Wang and Kurabayashi [143] pro-

posed Sketch2Map to generate 3D terrains from sketches.

Sketch2Map used a conditional GAN (cGAN) to convert a

sketch into an elevation bitmap, which is interpreted to

generate the practical terrain asset by a deterministic

algorithm [143].

More recently, Bontrager and Togelius [4] proposed a

new training method similar to GANs, where the network

consists of two parts: generator and agent. The generator is

trying to generate new playable levels adapted to the

agent’s strength, while the agent plays the game and

reports how playable it is and how hard it is to play. Similar

to GANs, the agent will try to improve itself by playing the

new generated levels, while the generator will improve

itself based on the agent performance on its generated

levels. In this work, RL is used to play the generated

content and not to generate the content; an RL agent

interacted with the generative model to create levels

adapted to the agent’s playing strength.

4.5 Evolutionary computation

There is a long tradition of using evolutionary computation

(EC) approaches for training (deep) neural networks. While

these are sometimes not regarded as DL, the standard

definition of DL does in fact not reference gradient descent.

Most evolved networks are deep, and architectures created

by evolutionary algorithms such as NEAT [124] often have

multiple layers and recurrent components [102].

For example, Hoover et al. [51] represented game levels

as functional scaffolding for musical composition voices

[49]. Taking Mario as an example, each level is presented

by a set of voices with the size of possible tile types in a

level. Each voice is a one-dimensional array of the same

length of the level, in which each element indicates the

vertical position of the tile if it presents on the corre-

sponding column, otherwise 0. Neural networks were

trained and evolved through neuroevolution of augmenting

topologies (NEAT) [124] to suggest placements of tiles in

Mario levels [51].

Hoover et al. [50] evolved CPPNs through NEAT for

generating both audio and visual content in the game

AudioInSpace. Risi et al. [94] evolved and trained CPPNs

with NEAT to generate flower images for a flower-breed-

ing video game Petalz.3 The CPPNs of different flowers

can be mated to generate new flowers.

Evolutionary computation techniques have also been

combined with unsupervised DL methods for generating

new content. A prominent example is the Deep Learning

Novelty Explorer (DeLeNoX) [69]. DeLeNoX alternates

phases of content exploration and content transformation

for the generation of spaceships, depicted as 2D black and

white images (Fig. 3). In the exploration phase, constrained

novelty search seeks maximally diverse artifacts and gen-

erates a training set. In the transformation phase, a deep

autoencoder learns to compress the variation between the

found artifacts into a lower-dimensional space. The newly

trained encoder is then used as the basis for a new fitness

function, transforming the search criteria for the next

exploration phase [69]. The process continues repeating

exploration and transformation phases thereby iteratively

refining and complexifying the generated outcomes.

Arguably one of the most popular examples of EC for

DLPCG is the aforementioned Latent Variable approach

[5], which combines unsupervised learning in the form of a

GAN/VAE with evolutionary computation to search for

content in the learned space of a GAN/VAE. Originating

from synthesizing new fingerprint [95], in the context of

games this approach has been employed to generate Super

Mario Bros and Zelda levels [104, 140].

In the work of Volz et al. [140], a DCGAN [91] is

trained on a set of level segments of Super Mario Bros

represented by 2D array of tiles, and then latent variable

evolution (LVE) [5] is applied to search for levels that are

more playable and encourage particular behaviors evalu-

ated by the games simulated by an A* agent. The overview

process is illustrated in Fig. 4. The resulted framework,

MarioGAN [140], certainly identified a new and creative

way of generating game content. However, two issues have

been observed: (i) broken pipes occur in some of the level

segments generated by GANs, and (ii) the segments were

connected directly in an arbitrary order to build complete

levels, while how to combine segments to make the

resulted levels more structured and organized was not

exploited (Fig. 5). To tackle the former issue, Shu et al.

[113] trained a MLP model to learn the surrounding

information of tiles and detect wrong tiles in the generated

segments (e.g., Fig. 6). An evolutionary repairer is

designed to search for optimal replacement tiles for fixing

the broken pipe [113]. To tackle the latter issue, a graph

grammar was used to combine rooms of Zelda generated

by a GAN into dungeons [36], and Schrum et al. [104]

proposed CPPN2GAN which used Compositional Pattern

3 https://www.facebook.com/Petalz-238904402867390/.

26 Neural Computing and Applications (2021) 33:19–37

123

https://www.facebook.com/Petalz-238904402867390/

Producing Networks (CPPNs) to organize level segments

generated by GANs into complete levels.

Inspired by [140], Irfan et al. [52] applied LVE and

trained DCGANs on randomly generated levels of 3 single

player games from the GVGAI framework [87], Freeway,

Zelda and Colourescape. Based on the work of [140], Mott

et al. [84] designed a new fitness function for CMA-ES as a

weighted sum of the number of frames that an action is

feasible, the fraction of agents that completed a level and

the largest fraction to control the difficulty of generated

levels. The weights are evaluated and tuned via the human

playing tests performed on the levels generated using the

corresponding fitness function [84].

Evolutionary methods for content generation can also be

combined with user feedback, such as through interactive

evolutionary computation (IEC), in which human evalua-

tion is used instead of the fitness evaluation by a simulator.

For example, Hastings et al. [44] used CPPNs to represent

weapons in a multiplayer video game Galactic Arms Race.4

The CPPNs are evolved during the game playing with the

preferences abstracted from the past playing of players.

IEC combined with LVE can allow users to breed their

own game levels, such as Zelda and Mario [104]. Based on

[36, 140], a mixed-initiative tile-based level design tool

was implemented by Schrum et al. [103], which allows

human to interact with the evolution and exploration within

latent level-design space (interface illustrated in Fig. 5),

and to play the generated levels in real-time.

EC methods can also collaborate with human to generate

and evaluate or repair game content. Liapis et al. [71]

presented Sentient World tool which allows interactions

with human designers and generates game maps using

Neuroevolution via novelty search. Sentient World can

generate high resolution maps based on the rough terrain

sketches drawn by designers, as well as the iterative

refining via selection and editing options opened to

designers.

Karavolos et al. [59] generated levels of a first-person

shooter (FPS) game with targeting gameplay outcomes, in

which a genetic algorithm is used to generate levels of

specific fitness values based on the predicted outcomes by a

CNN trained on simulated matches.

5 Using deep learning to evaluate content
and content generators

Evaluating content generators is not a trivial task. Much of

the ML and DL-based PCG work has focused their eval-

uations on the generated content and used those evaluations

as proxies for evaluating the generator itself. However, the

4 http://gar.eecs.ucf.edu/.

Fig. 3 The key phases of DeLeNoX for the autonomous generation of

content [69]. DeLeNox adopts the principles of exploration (realized

via constrained novelty search), transformation (realized via deep

denoising autoencoders) and iterative refinement (realized through the

increasing complexity of NEAT architectures). Image reproduced

with authors’ permission

Fig. 4 Overview process of MarioGan [140], reproduced with

authors’ permission

Fig. 5 Screenshot of interactive evolution interface in [103], repro-

duced with authors’ permission

Neural Computing and Applications (2021) 33:19–37 27

123

http://gar.eecs.ucf.edu/

computational creativity community has identified that in

order to get a full picture of the generator (or creative

program) the process by which the output content is created

should be evaluated as well. Colton [11] Jordanous [56]

Pease and Colton [86] each propose frameworks and

methodologies for evaluating the creativity of the process

of a generator. Smith and Whitehead [116] (later expanded

on by Summerville [125]) proposed methods for holisti-

cally evaluating a content generation approach, by evalu-

ating large swaths of generated content to get a broader

understanding of the generative space of a content gener-

ator and its biases within that generative space. Sum-

merville [125] focused on ML-based generators and

proposed approaches for highlighting the shortcomings and

strengths of a generator through methodically highlighting

generated artifacts (e.g., artifact most similar to an artifact

in the training set).

In this section, we survey uses of deep learning for

content generation in an indirect fashion. In particular, we

list studies (cf. Fig. 7) that consider deep learning for

testing or evaluating game content through the analysis of

generated content (Sect. 5.1), construction of human-like

playing bots (Sect. 5.2), or the construction of reliable

models of player experience (Sect. 5.3). We additionally

highlight which of these approaches focus on evaluating

the generator itself instead of only the content.

5.1 Analyzing content

Statistical measures on the generated content and similarity

measures based on the content used in training set (e.g.,

[77]) can give insight into the generative space of a content

generator and its biases within that space. Statistical mea-

sures can be used to compare the distribution of generated

content to the distribution of the training set [125]. Simi-

larity measures can also be specifically designed for this

task. For example, Lucas and Volz [77] compared

occurrences of small structures in the generated set to their

presence in the training set to measure similarity.

Many similarity and statistical measures suffer from the

same drawback of only measuring what is quantifiable.

Recent approaches in deep learning can help avoid this

drawback by learning latent semantic features of the con-

tent. Recent work has developed approaches to style

transfer [61, 74] by traversing the learned latent space of

the model, and others have analyzed the learned latent

space of their models to find semantic meaning in the

features [1]. These advances have led to the use of latent

space-based distance and similarity measures [144]. Lev-

eraging the latent space learned by a model to create

similarity measures between pieces of content might allow

us to develop more semantically meaningful similarity

measures in addition to the statistical measures currently in

use. As an indicative example of such a research direction,

Isaksen et al. [53] categorized tile-based 2D game levels

with semantic hashing based on autoencoders. The pro-

posed approach [53] can be used to categorize the gener-

ated level segments or rooms and group the ones sharing

similar styles to build a complete game level or dungeon.

5.2 Playing content

In this section, we review methods based on ANNs and DL

for reliable playtesting which can be used, in turn, to

evaluate game content generators in an indirect fashion.

Simulated playtesting [46, 47, 140] of generated content

can give quick insights into the features of the content and

the generative space of the content generator [116, 125].

Guzdial et al. [42] propose the use of deep reinforcement

learning agents for simulated playtesting as a way of cre-

ating more human-like playtraces. Guzdial et al. [42]

specifically focus on deep RL agents for Mario, where

human-like control is simulated by giving the agent

imprecise controls via stochastic effects on actions. Simi-

larly, Min et al. [82] designed a goal recognition

Fig. 6 Top: A MLP model trained on human-designed levels labels

wrong tiles (in red rectangle) and unsure tiles (in blue rectangle) in a

segment. Bottom: Segment fixed by an evolutionary repairer assisted

by the trained MLP model [113]. Images reproduced with authors’

permission

28 Neural Computing and Applications (2021) 33:19–37

123

framework based on stacked denoising autoencoders for

open-ended games, which can be used to personalize

games for different players according to their actions.

CNN to predict the outcomes [57] trained a CNN to

predict the outcomes of a simplified 3 versus 3 multiplayer

deathmatch shooter game to evaluate and determine if the

levels, represented by maps and weapon parameters, are

balanced or favoring a team. Based on the predictor for the

same deathmatch shooter game, Karavolos et al. [58] fur-

ther designed a DL surrogate model for pairing levels and

character classes for desired game outcomes. Gud-

mundsson et al. [35] imitated the behavior of human

through SL and performed experimental study on non-de-

terministic puzzle games Candy Crush Saga and Candy

Crush Soda Saga. A CNN was trained on human player

data and then used to predict the action that human players

most likely to select when playing levels that were unseen

during training [35]. This approach can be used to measure

metrics such as the diversity of actions to evaluate gener-

ated new levels. Notice each of these methods focuses on

evaluating the generated artifacts, but can be expanded to

more broadly evaluating the generator itself if the results of

artifact evaluations are used to stratify the generative space

or further explore the biases and capabilities of the

generator.

5.3 Experiencing content

Human user trials and surveys can provide the most useful

insight into the less quantifiable (i.e. subjective) features of

the content and the generation process, such as the human-

perceived quality of the generated content over time. A

large volume of studies focus on the use of deep learning

for modeling aspects of player experience which can be

used, in turn, to evaluate the content that is generated and

experienced by the player. Player experience is usually

provided as annotated labels (ratings or ranks) or even

continuous traces via crowdsourcing. Running user evalu-

ations and crowdsourcing labels of subjective aspects such

as experience, however, can be a laborious task which may

not be feasible if what is desired is the quick iteration on

the generative system. One approach for further leveraging

the output of a user evaluation is to treat the user

evaluations as features to be learned. Larsson and Petri [66]

trained neural networks using NEAT to predict the user

rating of user-created StarCraft maps. This approach [66]

can be extended to evaluate generated StarCraft maps.

Within the platformer genre, a series of studies by

Shaker et al. [109–111] investigate the use of DL models of

player experience for the generation of experience-tailored

Super Mario Bros levels. Camilleri et al. [8] view a play-

er’s believability as a content generation problem and used

various forms of deep networks to infer the mapping

between game content, gameplay and believability in a

Super Mario Bros variant. The networks of that study

predict the degree to which a combination of gameplay

behavior and a generated level can be considered believ-

able. Guzdial et al. [42] trained a CNN to predict rate of the

difficulty, enjoyment and aesthetics of game levels and

performed case studies on Infinite Mario Bros, which was

further enhanced by the features extracted from search

history of an A* agent. Similarly, Summerville et al. [128]

used a regression model on a large set of statistical mea-

sures to find measures that predict those same human

evaluations of Mario levels. More recently, Pfau et al. [90]

proposed deep player behavior modeling (DPBM) with a

multilayer perceptron (MLP) trained on behavioral data

and game observation to map game states to action prob-

abilities. All aforementioned approaches can be used, for

instance, to evaluate generated levels.

The first application of CNNs for modeling player

experience is introduced by Martinez et al. [80]. CNNs in

that study consider and fuse the content of a 3D maze prey–

predator game and the in-game behavior of the player [79]

and predict reported ranks of player experience via use

deep preference learning. Looking at the challenge of

player affect modeling by solely focusing on gameplay,

Makantasis et al. [78] used various CNN models to predict

the level of arousal of survival shooter games directly from

the pixels of gameplay in a general player-agnostic fashion.

Thus CNNs map between gameplay behavior and game

content as represented by pixels—such as in-game play

features and UI elements. In principle, such surrogate

models of arousal can be used directly and evaluate video

content of any game within the survival shooter genre. In a

similar recent study, various types of neural networks have

been trained to predict the continuous viewer engagement

of PUBG streamed games on Twitch [81]; the engagement

models obtained are highly accurate and general across

different streamers. Camilleri et al. [9] took player expe-

rience modeling to the next level and built models that are

general across many different games. The models are built

on simple 1-hidden layer networks indicating the potential

of the methodology with larger DL representations for the

general evaluation of the experience of game content

across games. Similar to the previous section, each of these

Analyzing content
[1, 53, 61, 74]

Playing content
[35, 42, 57, 58, 82]

Experiencing content
[8, 42, 66, 109, 110, 111]
[9, 78, 79, 80, 81, 90, 128]

Fig. 7 Summary of the works that focused on analyzing, playing or

experiencing generated content

Neural Computing and Applications (2021) 33:19–37 29

123

methods is predominantly used to evaluate content. How-

ever, using these methods to evaluate large samples of

content from a generator can enable a meta-analysis of the

types of content a particular generator tends toward

creating.

6 Discussion and outlook

The combination of deep learning and PCG in games is

beneficial for both game research—as deep learning

enhances our capacity to generate content—and deep

learning research since games pose challenging problems

for deep learning to solve. Deep learning opens new

opportunities for the autonomous generation of content of

any type and has a plethora of use cases within games. As

we saw throughout this article, deep learning may serve as

a content generator, as a content evaluator, as a gameplay

outcome predictor, as a driver of search, and as a pattern

recognizer for repair and style transfer. This section sur-

veys the areas with a particular importance for the current

and future use of DLPCG in games with an emphasis on

mixed-initiative generation, style transfer and breeding,

underexplored content types, learning from small datasets,

orchestrating different content types within a game, and

generalizing generation across games.

6.1 Mixed-initiative DLPCG

Autonomous PCG systems, including the cases where the

initiative of the human designer is limited to algorithmic

parameterizations [148], can hardly generate content with

target quality or features. Recently, more and more work

takes into account the preferences or input of designers or

players in different ways while generating content. Mixed-

initiative PCG [149], formally defined as ‘‘the process that

considers both the human and the computer proactively

making content contributions to the game design task’’

[148], offers a more controllable and practical design

process that may involve the use of DLPCG algorithms but

their use is limited so far.

Level generation in games, as a popular application of

mixed-initiative DLPCG, requires some initial specifica-

tions (i.e. the initiative) from the designer—e.g. in the form

of sketches [43]—to assist the design process. A popular

example of the mixed-initiative paradigm is the shallow

neural network model presented in [70] which generates

game strategy maps based on the terrain sketches drawn by

designers. The map generation feature of Sentient

Sketchbook features neuroevolutionary search which is

driven by design objectives and the novelty of the map.

Moving from level to image generation, Serpa and Rodri-

gues [107] adapted the GAN-based Pix2Pix architecture to

generate both gray and color pixel art sprites from sketches

using a single network.

Taking platform games as the domain under investiga-

tion, Guzdial et al. [39] developed a mixed-initiative Super

Mario Bros level design tool that leveraged several existing

PCGML techniques, including Markov chains [117],

LSTM [126] and Bayes Net [37], to assist the user in

creating levels. user in creating levels. [39] gathered data

on how the users interacted with the models in the tool, and

trained a CNN on that collected data. This CNN was then

used to better predict and generate level sections along with

the user. Later, Guzdial et al. [41] used the trained CNN

with active learning based on the user current interaction to

generate levels for Super Mario in a mixed-initiative

fashion [68, 149]. Recently, Schrum et al. [103] have

allowed the designers to change manually the latent vectors

of the trained generative model or define the mutation

strength of their evolutionary generator for tile-based 2D

levels. Delarosa et al. [17] presented RL Brush, a human-

driven, AI-augmented design tool also for tile-based 2D

levels, in which RL-based models have been used to

enhance human design with suggestions generated by PCG

methods.

6.2 Style transfer, breeding and blending

Most style transfer methods and generative models for

image, music and sound [6] can be applied to generate

game content. So far, only a few work focused on the style

transfer for game content (e.g., [71, 107, 150]). Liapis et al.

[71] generated game maps based on the terrain sketches,

and Serpa and Rodrigues [107] generated art sprites from

sketches drawn by human. However, a number of diverse

input sketches to these two work can also be generated

using deep learning approaches based on a single human

sketch [43]. Moreover, algorithms and techniques designed

for image generation can often be adapted to the automatic

generation of faces and sprites in games. For instance, Yoo

and Kim [150] applied a neural styling algorithm [30] to

change artistic style of graphics in a strategy game

Hedgewars.5 Another example is ArtBreeder,6 which

contains several generative models for creating new images

by image breeding, among which, the models for portraits

and anime-style faces, can be used to generate comic or

video game characters and the one for landscapes can be

used to generate background images for games. Blending

levels from different games has recently gained more

attention from the research community, with much recent

work focusing on blending platformer levels. Sarkar and

Cooper [96, 99] trained separate models on two different

5 http://www.hedgewars.org/.
6 https://artbreeder.com/.

30 Neural Computing and Applications (2021) 33:19–37

123

http://www.hedgewars.org/
https://artbreeder.com/

games, and then blended new levels using these trained

models via interpolation or alternation. Snodgrass and

Sarkar [121] used VAEs to generate level structures, and a

search-based approach to blend details from various plat-

formers, while Sarkar et al. [100] directly trained VAEs on

levels from several platforming games and interpolated the

latent vectors between domains for blending.

6.3 Underexplored content types

Most of the reviewed works focus on the design of content

that can be represented by 2D images of tiles or pixels,

such as 2D levels, landscapes and sprites (cf. Sect. 4). Only

a few of them considered text and narrative generation,

music and rhythm generation, weapons generation for FPS,

etc.

In the research we have surveyed, platformer and dun-

geon-like games (e.g., arcade games, FPS games and

adventure games) are clearly over-represented. In particu-

lar, Super Mario Bros and Zelda are usually used for testing

the GAN-based level generation approaches.

However, the types of games are not limited to arcade

games and the generation of some commonly seen types of

game content are rarely investigated. For instance, the

generation of characters (skills, actions, and images) for

fighting games and multi-player online battle games; the

generation of cards and rules for strategy card games (e.g.,

Hearthstone); event generation (stories and effects) (e.g.,

for The Sims); goal generation in all kinds of games.

Several approaches from other fields can be adapted to

DLPCG, such as transfer learning for image generation in

games, story generation for text-based adventure games

and conversational NPCs.

6.4 Content generation in real time—
personalized game content

Another less explored area is content generation in real

time, such as generating level segments during gameplay,

according to the actual player’s playing skill-depth, style

and preferences. Taking Super Mario Bros as an example,

several MarioGAN models can be trained offline using a

variety of fitness functions with different aims (e.g.,

encourage more jumps by putting more pipes, put more

coins for players to collect, adjust the difficulty by con-

trolling the number of enemies), and then be selected to

generate new level segments during the game after deter-

mining the player’s preferences and performance according

to the gameplay data during first segments.

6.5 Learning from small data

One of the main limitations for most forms of PCG based

on deep learning, or PCGML in general, is the access to

training data. Some games have a large amount of existing

content, either made by developers or by users. However,

for a game in development there may not be content to

learn from, because the content may not be made yet. In

fact, not having to produce all of that content may be a

prime reason for wanting to train a content generator in the

first place. What would be desirable here would be a way

of training a generator based on only a few pieces of hand-

designed content, such as items, levels, or characters.

One approach to doing this is bootstrapping, where a

generator is first trained on just a few examples, and

whenever it produces new content that satisfies the func-

tionality constraints, this content gets added to the training

set for continued training of the generator [137]. This

approach requires a reliable test of the functionality con-

straints, for example the playability of a level can be tested

with game-playing agents.

Note that the amount of data required to train a reliable

model varies greatly depending on the complexity of the

model, the complexity of the data, and the training pro-

cedures of the model. For example, the training data lim-

itation does not apply to PCG methods based on

reinforcement learning. Further, MarioGAN [140] was

trained on a single Mario level broken into many sections.

Snodgrass et al. [122] explored the effects of the amount

and diversity of training data on a simple Markov chain

model and an LSTM and found that the benefits of addi-

tional data dropped off after several levels. Further studies

exploring the data requirements of DLPCG models can

help illuminate the usability and scalability of these

approaches.

6.6 Generalization across games

Another, and arguably better, approach to learning gener-

ators for games for which you do not (yet) have much

content would be trained on content from other games.

After all, games from a particular genre have much in

common, and it should arguably be possible to train on FPS

levels from Quake, Halo and Call of Duty to learn to

generate new levels for Half-Life. It should be even easier

to train character models on existing human-designed

characters from several open-world games, as they share

the same functionality constraints. The trained generator

would likely be a conditional model that takes some

encoding of the characteristics of a game as input. In all of

these cases, the deep learning model would have to learn to

Neural Computing and Applications (2021) 33:19–37 31

123

represent the underlying similarities between content for

the games it was trained on, as well as the differences.

6.7 Orchestration for game generation

A key future research direction for any PCG framework is

the generation of more than one domain of computational

creativity within games. The six key computational game

creativity domains as defined by Liapis et al. [72] include

visuals, audio, narrative, levels, rules and gameplay. A

process that considers the output of two or more of these

domain generators up to the generation of a complete game

is referred to as orchestration [73]. In other words,

orchestration can be defined as the ‘‘harmonization of the

game generation process’’ [73].

While orchestration is a core aim for the autonomous

generation of complete games, Liapis et al. [73] reported

only a few game generation systems that considered more

than one generation domain. These include Angelina

[12, 13], Game-O-matic [138], Sonancia [76], AudioInS-

pace [50] and the FPS generator by Karavolos et al.

[58, 60]. Among these case studies of orchestrated game

generation, only a few can be considered early embryos of

DLPCG-based game orchestration. In particular, the work

by Karavolos et al. [58, 60], Sonancia [76], and

AudioInSpace [50] use various forms of shallow and deep

neural networks—both as surrogate models (indirectly) and

as generative functions (directly)—to generate content for

multiple domains within games. As deep learning is of

particular importance for fusing the generation process

across content representations of dissimilar resolutions and

characteristics [148], we expect to witness an increase in

DL research work toward achieving game orchestration.

7 Conclusions

The work surveyed in this paper is the result of two con-

vergent trends from the last few years. One is the

increasing use of deep learning for generative tasks in non-

game contexts, such as GANs and VAEs used for gener-

ating pictures of faces and RNNs used for generating

voices and music. The other is the increasing use of

machine learning in PCG, something that was unheard of

until five years or so ago. Both of these trends build on the

deep learning revolution itself, which has made machine

learning effective on completely new classes of problems.

As a result, interest in deep learning for PCG has

exploded. Examples abound, as our survey shows. It is very

likely that we will see rapid progress in this research

direction in the near future. This survey paper attempts to

contribute to this progress by surveying and systematizing

this work and implicitly and explicitly pointing out relevant

and fertile research problems. We believe that this is a very

timely effort given the exciting pace of this field.

Deep learning methods have been applied alone or in

collaboration with other PCG methods to generate game

content and to analyze, play and experience content. Due to

the characteristics of different types of content, different

types of deep neural architectures have been used. Among

the reviewed work, the widely used neural architectures

include convolutional neural networks for supervised

learning tasks, varying from generating texture or music for

target emotion to predicting game outcomes or difficulty

rate; long short-term memory for generating sequential

data like charts for rhythm and narrative or for predicting

action sequences; deep variational autoencoders, mostly

used for generating level maps and sometimes for classi-

fying NPCs’ or players’ behaviors; and generative adver-

sarial networks for creating image-like content (e.g., level

maps, landscapes, faces and sprites). A part from the direct

use of deep learning methods or their alliance with evo-

lutionary computation to generate game content, they have

also been used for evaluating content and content genera-

tors in an indirect manner.

Although a variety of game content (e.g., levels, text,

character models, textures, music and sound) have been

investigated, the generation of content like event, goals or

character features with skill-depth can be exploited more.

As a future research, evolving or training game-playing

agents and content generators in parallel, such as in the

recent work of Dharna et al. [19], is of great interest, as

well as the generalization across games. Besides those,

online generation of game content to adapt players’ skill

and preferences in real time will accelerate the realization

of personalized games.

Acknowledgements J. Liu was supported by the National Key R&D

Program of China (Grant No. 2017YFC0804003), the National Nat-

ural Science Foundation of China (Grant No. 61906083), the

Guangdong Provincial Key Laboratory (Grant No.

2020B121201001), the Program for Guangdong Introducing Innova-

tive and Entrepreneurial Teams (Grant No. 2017ZT07X386), the

Science and Technology Innovation Committee Foundation of

Shenzhen (Grant No. JCYJ20190809121403553), the Shenzhen Sci-

ence and Technology Program (Grant No.

KQTD2016112514355531) and the Program for University Key

Laboratory of Guangdong Province (Grant No. 2017KSYS008).

S. Risi was supported by a Google Faculty Research award and a

Sapere Aude: DFF-Starting Grant. A. Khalifa and J. Togelius

acknowledge the financial support from National Science Foundation

(NSF) award number 1717324 - ‘‘RI: Small: General Intelligence

through Algorithm Invention and Selection’’. G. N. Yannakakis was

supported by European Union’s Horizon 2020 AI4Media

(951911) and TAMED (101003397) projects.

Compliance with ethical standards

Conflict of interest The authors declare that they have a conflict of

interest with modl.ai.

32 Neural Computing and Applications (2021) 33:19–37

123

References

1. Abdal R, Qin Y, Wonka P (2019) Image2StyleGAN: how to

embed images into the StyleGAN latent space? In: Proceedings

of the IEEE International Conference on Computer Vision,

pp 4432–4441

2. Ammanabrolu P, Cheung W, Tu D, Broniec W, Riedl MO

(2020) Bringing stories alive: generating interactive fiction

worlds. In: Proceedings of the sixteenth annual AAAI confer-

ence on Artificial Intelligence and Interactive Digital Enter-

tainment (AIIDE 2020)

3. Awiszus M, Schubert F, Rosenhahn B (2020) TOAD-GAN:

coherent style level generation from a single example. In: Pro-

ceedings of the sixteenth annual AAAI conference on Artificial

Intelligence and Interactive Digital Entertainment (AIIDE 2020)

4. Bontrager P, Togelius J (2020) Fully differentiable procedural

content generation through generative playing networks. arXiv

preprint arXiv:200205259

5. Bontrager P, Roy A, Togelius J, Memon N, Ross A (2018)

DeepMasterPrints: generating masterprints for dictionary attacks

via latent variable evolution. In: 2018 IEEE 9th International

Conference on Biometrics Theory. Applications and Systems

(BTAS). IEEE, pp 1–9

6. Briot JP, Hadjeres G, Pachet F (2019) Deep learning techniques

for music generation, vol 10. Springer, Berlin

7. Browne C, Maire F (2010) Evolutionary game design. IEEE

Trans Comput Intell AI Games 2(1):1–16

8. Camilleri E, Yannakakis GN, Dingli A (2016) Platformer level

design for player believability. In: 2016 IEEE Conference on

Computational Intelligence and Games (CIG). IEEE, pp 1–8

9. Camilleri E, Yannakakis GN, Liapis A (2017) Towards general

models of player affect. In: 2017 seventh international confer-

ence on Affective Computing and Intelligent Interaction (ACII).

IEEE, pp 333–339

10. Chen Z, Amato C, Nguyen THD, Cooper S, Sun Y, El-Nasr MS

(2018) Q-deckrec: a fast deck recommendation system for col-

lectible card games. In: 2018 IEEE conference on Computa-

tional Intelligence and Games (CIG), pp 1–8. https://doi.org/10.

1109/CIG.2018.8490446

11. Colton S (2008) Creativity versus the perception of creativity in

computational systems. In: AAAI spring symposium: creative

intelligent systems, vol 8

12. Cook M, Colton S, Raad A, Gow J (2013) Mechanic miner:

reflection-driven game mechanic discovery and level design. In:

European conference on the applications of evolutionary com-

putation. Springer, pp 284–293

13. Cook M, Colton S, Gow J (2016) The angelina videogame

design system—part I. IEEE Trans Comput Intell AI Games

9(2):192–203

14. Dahlskog S, Togelius J, Nelson MJ (2014) Linear levels through

n-grams. In: Proceedings of the 18th International Academic

MindTrek Conference: Media Business, Management, Content

& Services, pp 200–206

15. Davoodi O, Ashtiani M, Rajabi M (2020) An approach for the

evaluation and correction of manually designed video game

levels using deep neural networks. Comput J. https://doi.org/10.

1093/comjnl/bxaa071

16. De Kegel B, Haahr M (2020) Procedural puzzle generation: a

survey. IEEE Trans Games 12(1):21–40

17. Delarosa O, Dong H, Ruan M, Khalifa A, Togelius J (2020)

Mixed-initiative level design with RL brush. arXiv preprint

arXiv:200802778

18. Dhariwal P, Jun H, Payne C, Kim JW, Radford A, Sutskever I

(2020) Jukebox: a generative model for music. arXiv preprint

arXiv:200500341

19. Dharna A, Togelius J, Soros L (2020) Coevolution of game

levels and game-playing agents. In: Proceedings of the sixteenth

annual AAAI conference on Artificial Intelligence and Interac-

tive Digital Entertainment (AIIDE 2020)

20. Di Liello L, Ardino P, Gobbi J, Morettin P, Teso S, Passerini A

(2020) Efficient generation of structured objects with con-

strained adversarial networks. arXiv preprint arXiv:200713197

21. Donahue C, Lipton ZC, McAuley J (2017) Dance dance con-

volution. In: International conference on machine learning,

pp 1039–1048

22. Dormans J (2010) Adventures in level design: generating mis-

sions and spaces for action adventure games. In: Proceedings of

the 2010 workshop on procedural content generation in games,

pp 1–8

23. Earle S (2019) Using fractal neural networks to play SimCity 1

and Conway’s Game of Life at variable scales. In: Proceedings

of the Experimental AI in Games (EXAG) Workshop at AIIDE

24. Ebert DS, Musgrave FK, Peachey D, Perlin K, Worley S (2003)

Texturing & modeling: a procedural approach. Morgan Kauf-

mann, Burlington

25. Fadaeddini A, Majidi B, Eshghi M (2018) A case study of

generative adversarial networks for procedural synthesis of

original textures in video games. In: 2018 2nd National and 1st

International Digital Games Research Conference: trends,

technologies, and applications (DGRC). IEEE, pp 118–122

26. Fang K, Zhu Y, Savarese S, Fei-Fei L (2020) Adaptive proce-

dural task generation for hard-exploration problems. arXiv

preprint arXiv:200700350

27. Ferreira LN, Lelis LH, Whitehead J (2020) Computer-generated

music for tabletop role-playing games. In: Proceedings of the

sixteenth annual AAAI conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE 2020)

28. Fontaine M, Togelius J, Nikolaidis S, Hoover AK (2020)

Covariance matrix adaptation for the rapid illumination of

behavior space. In: Proceedings of the 2020 genetic and evo-

lutionary computation conference

29. Fontaine MC, Liu R, Togelius J, Hoover AK, Nikolaidis S

(2020) Illuminating Mario scenes in the latent space of a gen-

erative adversarial network. arXiv preprint arXiv:200705674

30. Gatys LA, Ecker AS, Bethge M (2015) A neural algorithm of

artistic style. arXiv preprint arXiv:150806576

31. Giacomello E, Lanzi PL, Loiacono D (2018) Doom level gen-

eration using generative adversarial networks. In: 2018 IEEE

Games, Entertainment, Media Conference (GEM). IEEE,

pp 316–323

32. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley

D, Ozair S, Courville A, Bengio Y (2014) Generative adver-

sarial nets. In: Ghahramani Z, Welling M, Cortes C, Lawrence

ND, Weinberger KQ (eds) Advances in neural information

processing systems, vol 27. Curran Associates, Inc., Red Hook,

pp 2672–2680

33. Goodfellow I, Bengio Y, Courville A (2016) Deep learning.

MIT Press. http://www.deeplearningbook.org

34. Greff K, Srivastava RK, Koutnı́k J, Steunebrink BR, Schmid-

huber J (2017) LSTM: a search space odyssey. IEEE Trans

Neural Netw Learn Syst 28(10):2222–2232

35. Gudmundsson SF, Eisen P, Poromaa E, Nodet A, Purmonen S,

Kozakowski B, Meurling R, Cao L (2018) Human-like

playtesting with deep learning. In: 2018 IEEE conference on

Computational Intelligence and Games (CIG). IEEE, pp 1–8

36. Gutierrez J, Schrum J (2020) Generative adversarial network

rooms in generative graph grammar dungeons for the Legend of

Zelda. In: 2020 IEEE Congress on Evolutionary Computation

(CEC). IEEE

Neural Computing and Applications (2021) 33:19–37 33

123

http://arxiv.org/abs/200205259
https://doi.org/10.1109/CIG.2018.8490446
https://doi.org/10.1109/CIG.2018.8490446
https://doi.org/10.1093/comjnl/bxaa071
https://doi.org/10.1093/comjnl/bxaa071
http://arxiv.org/abs/200802778
http://arxiv.org/abs/200500341
http://arxiv.org/abs/200713197
http://arxiv.org/abs/200700350
http://arxiv.org/abs/200705674
http://arxiv.org/abs/150806576
http://www.deeplearningbook.org

37. Guzdial M, Riedl M (2016) Game level generation from

gameplay videos. In: Twelfth artificial intelligence and inter-

active digital entertainment conference

38. Guzdial M, Long D, Cassion C, Das A (2017) Visual procedural

content generation with an artificial abstract artist. In: Pro-

ceedings of ICCC computational creativity and games workshop

39. Guzdial M, Liao N, Riedl M (2018) Co-creative level design via

machine learning. In: Proceedings of the Experimental AI in

Games (EXAG) workshop at AIIDE

40. Guzdial M, Reno J, Chen J, Smith G, Riedl M (2018)

Explainable PCGML via game design patterns. In: Proceedings

of the Experimental AI in Games (EXAG) workshop at AIIDE

41. Guzdial M, Liao N, Chen J, Chen SY, Shah S, Shah V, Reno J,

Smith G, Riedl MO (2019) Friend, collaborator, student, man-

ager: how design of an AI-driven game level editor affects

creators. In: Proceedings of the 2019 CHI conference on human

factors in computing systems, pp 1–13

42. Guzdial MJ, Sturtevant N, Li B (2016) Deep static and dynamic

level analysis: a study on infinite mario. In: Twelfth artificial

intelligence and interactive digital entertainment conference

43. Ha D, Eck D (2017) A neural representation of sketch drawings.

arXiv preprint arXiv:170403477

44. Hastings EJ, Guha RK, Stanley KO (2009) Automatic content

generation in the galactic arms race video game. IEEE Trans

Comput Intell AI Games 1(4):245–263

45. Hochreiter S, Schmidhuber J (1997) LSTM can solve hard long

time lag problems. In: Advances in neural information pro-

cessing systems, pp 473–479

46. Holmgård C, Liapis A, Togelius J, Yannakakis GN (2014)

Evolving personas for player decision modeling. In: 2014 IEEE

conference on computational intelligence and games. IEEE,

pp 1–8

47. Holmgard C, Green MC, Liapis A, Togelius J (2018) Automated

playtesting with procedural personas with evolved heuristics.

IEEE Trans Games 11(4):352–362

48. Hong S, Kim S, Kang S (2019) Game sprite generator using a

multi discriminator GAN. KSII Trans Internet Inf Syst

13(8):4255–4269

49. Hoover AK, Szerlip PA, Stanley KO (2014) Functional scaf-

folding for composing additional musical voices. Comput Music

J 38(4):80–99

50. Hoover AK, Cachia W, Liapis A, Yannakakis GN (2015)

Audioinspace: exploring the creative fusion of generative audio,

visuals and gameplay. In: International conference on evolu-

tionary and biologically inspired music and art. Springer,

pp 101–112

51. Hoover AK, Togelius J, Yannakis GN (2015) Composing video

game levels with music metaphors through functional scaf-

folding. In: First computational creativity and games workshop.

ACC

52. Irfan A, Zafar A, Hassan S (2019) Evolving levels for general

games using deep convolutional generative adversarial net-

works. In: 2019 11th Computer Science and Electronic Engi-

neering (CEEC). IEEE, pp 96–101

53. Isaksen A, Holmgård C, Togelius J (2017) Semantic hashing for

video game levels. Game Puzzle Des 3(1):10–16

54. Jain R, Isaksen A, Holmgård C, Togelius J (2016) Autoencoders

for level generation, repair, and recognition. In: Proceedings of

the ICCC workshop on computational creativity and games

55. Jin Y, Zhang J, Li M, Tian Y, Zhu H, Fang Z (2017) Towards

the automatic anime characters creation with generative adver-

sarial networks. CoRR arXiv:1708.05509

56. Jordanous A (2012) A standardised procedure for evaluating

creative systems: computational creativity evaluation based on

what it is to be creative. Cogn Comput 4(3):246–279

57. Karavolos D, Liapis A, Yannakakis G (2017) Learning the

patterns of balance in a multi-player shooter game. In: Pro-

ceedings of the 12th international conference on the foundations

of digital games, pp 1–10

58. Karavolos D, Liapis A, Yannakakis GN (2018) Pairing character

classes in a deathmatch shooter game via a deep-learning sur-

rogate model. In: Proceedings of the 13th international confer-

ence on the Foundations of digital games, pp 1–10

59. Karavolos D, Liapis A, Yannakakis GN (2018) Using a surro-

gate model of gameplay for automated level design. In: 2018

IEEE conference on Computational Intelligence and Games

(CIG). IEEE, pp 1–8

60. Karavolos D, Liapis A, Yannakakis GN (2019) A multi-faceted

surrogate model for search-based procedural content generation.

IEEE Trans Games. https://doi.org/10.1109/TG.2019.2931044

61. Karras T, Laine S, Aittala M, Hellsten J, Lehtinen J, Aila T

(2019) Analyzing and improving the image quality of stylegan.

arXiv preprint arXiv:191204958

62. Khalifa A, Bontrager P, Earle S, Togelius J (2020) PCGRL:

procedural content generation via reinforcement learning. arXiv

preprint arxiv:2001.09212

63. Kingma DP, Welling M (2013) Auto-encoding variational

bayes. arXiv preprint arXiv:13126114

64. Kuang P, Luo D (2020) Conditional convolutional generative

adversarial networks based interactive procedural game map

generation. In: Future of information and communication con-

ference. Springer, pp 400–419

65. Kumaran V, Mott BW, Lester JC (2020) Generating game levels

for multiple distinct games with a common latent space. In:

Proceedings of the sixteenth annual AAAI conference on Arti-

ficial Intelligence and Interactive Digital Entertainment (AIIDE

2020)

66. Larsson S, Petri O (2016) Content evaluation of starcraft maps

using neuroevolution. Dissertation. Retrieved from http://urn.kb.

se/resolve?urn=urn:nbn:se:bth-11684

67. Liang Y, Li W, Ikeda K (2019) Procedural content generation of

rhythm games using deep learning methods. In: Joint interna-

tional conference on entertainment computing and serious

games. Springer, pp 134–145

68. Liapis A, Yannakis GN (2016) Boosting computational cre-

ativity with human interaction in mixed-initiative co-creation

tasks. In: Proceedings of the ICCC workshop on computational

creativity and games

69. Liapis A, Martı́nez HP, Togelius J, Yannakakis GN (2013)

Transforming exploratory creativity with delenox. In: Interna-

tional conference on computational creativity

70. Liapis A, Yannakakis GN, Togelius J (2013) Sentient sketch-

book: computer-aided game level authoring. In: Proceedings of

the 2013 ACM conference on foundations of digital games

71. Liapis A, Yannakakis GN, Togelius J (2013) Sentient world:

human-based procedural cartography. In: International confer-

ence on evolutionary and biologically inspired music and art.

Springer, pp 180–191

72. Liapis A, Yannakakis GN, Togelius J (2014) Computational

game creativity. In: ICCC

73. Liapis A, Yannakakis GN, Nelson MJ, Preuss M, Bidarra R

(2018) Orchestrating game generation. IEEE Trans Games

11(1):48–68

74. Liu MY, Breuel T, Kautz J (2017) Unsupervised image-to-im-

age translation networks. In: Advances in neural information

processing systems, pp 700–708

75. Liu Z, Luo P, Wang X, Tang X (2015) Deep learning face

attributes in the wild. In: Proceedings of International Confer-

ence on Computer Vision (ICCV)

76. Lopes P, Liapis A, Yannakakis GN (2015) Sonancia: sonifica-

tion of procedurally generated game levels. In: ICCC

34 Neural Computing and Applications (2021) 33:19–37

123

http://arxiv.org/abs/170403477
http://arxiv.org/abs/1708.05509
https://doi.org/10.1109/TG.2019.2931044
http://arxiv.org/abs/191204958
http://arxiv.org/abs/2001.09212
http://arxiv.org/abs/13126114
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11684
http://urn.kb.se/resolve?urn=urn:nbn:se:bth-11684

77. Lucas SM, Volz V (2019) Tile pattern KL-divergence for ana-

lysing and evolving game levels. In: Proceedings of the Genetic

and Evolutionary Computation Conference, GECCO-19. Asso-

ciation for Computing Machinery, New York, NY, USA,

pp 170–178. https://doi.org/10.1145/3321707.3321781

78. Makantasis K, Liapis A, Yannakakis GN (2019) From pixels to

affect: a study on games and player experience. In: 2019 8th

International Conference on Affective Computing and Intelli-

gent Interaction (ACII). IEEE, pp 1–7

79. Martı́nez HP, Yannakakis GN (2014) Deep multimodal fusion:

combining discrete events and continuous signals. In: Proceed-

ings of the 16th international conference on multimodal inter-

action, pp 34–41

80. Martinez HP, Bengio Y, Yannakakis GN (2013) Learning deep

physiological models of affect. IEEE Comput Intell Mag

8(2):20–33

81. Melhart D, Gravina D, Yannakakis GN (2020) Moment-to-

moment engagement prediction through the eyes of the obser-

ver: PUBG streaming on twitch. In: Foundations of digital

games

82. Min W, Ha EY, Rowe J, Mott B, Lester J (2014) Deep learning-

based goal recognition in open-ended digital games. In: Tenth

artificial intelligence and interactive digital entertainment

conference

83. Mordvintsev A, Randazzo E, Niklasson E, Levin M (2020)

Growing neural cellular automata. Distill 5:e23. https://doi.org/

10.23915/distill.00023

84. Mott J, Nandi S, Zeller L (2019) Controllable and coherent level

generation: a two-pronged approach. In: Experimental AI in

games workshop

85. Park K, Mott BW, Min W, Boyer KE, Wiebe EN, Lester JC

(2019) Generating educational game levels with multistep deep

convolutional generative adversarial networks. In: 2019 IEEE

Conference on Games (CoG). IEEE, pp 1–8

86. Pease A, Colton S (2011) On impact and evaluation in com-

putational creativity: a discussion of the turing test and an

alternative proposal. In: Proceedings of the AISB symposium on

AI and philosophy, vol 39

87. Perez-Liebana D, Liu J, Khalifa A, Gaina RD, Togelius J, Lucas

SM (2019a) General video game AI: a multitrack framework for

evaluating agents, games, and content generation algorithms.

IEEE Trans Games 11(3):195–214

88. Perez-Liebana D, Lucas SM, Gaina RD, Togelius J, Khalifa A,

Liu J (2019) General video game artificial intelligence. Morgan

& Claypool Publishers. https://gaigresearch.github.io/

gvgaibook/

89. Perlin K (1985) An image synthesizer. ACM Siggraph Comput

Graph 19(3):287–296

90. Pfau J, Liapis A, Volkmar G, Yannakakis GN, Malaka R (2020)

Dungeons & replicants: automated game balancing via deep

player behavior modeling. In: Proceedings of the 2020 IEEE

Conference on Games (CoG)

91. Radford A, Metz L, Chintala S (2015) Unsupervised represen-

tation learning with deep convolutional generative adversarial

networks. arXiv preprint arXiv:151106434

92. Radford A, Wu J, Child R, Luan D, Amodei D, Sutskever I

(2019) Language models are unsupervised multitask learners.

OpenAI Blog

93. Risi S, Togelius J (2019) Increasing generality in machine

learning through procedural content generation. arXiv preprint

arXiv:1911.13071

94. Risi S, Lehman J, D’Ambrosio DB, Hall R, Stanley KO (2015)

Petalz: search-based procedural content generation for the

casual gamer. IEEE Trans Comput Intell AI Games

8(3):244–255

95. Roy A, Memon N, Ross A (2017) Masterprint: exploring the

vulnerability of partial fingerprint-based authentication systems.

IEEE Trans Inf Forensics Secur 12(9):2013–2025

96. Sarkar A, Cooper S (2018) Blending levels from different games

using LSTMs. In: Proceedings of the Experimental AI in Games

(EXAG) workshop at AIIDE

97. Sarkar A, Cooper S (2020) Sequential segment-based level

generation and blending using variational autoencoders. arXiv

preprint arXiv:200708746

98. Sarkar A, Cooper S (2020) Towards game design via creative

machine learning (GDCML). In: Proceedings of the 2020 IEEE

Conference on Games (CoG)

99. Sarkar A, Yang Z, Cooper S (2019) Controllable level blending

between games using variational autoencoders. In: Proceedings

of the Experimental AI in Games (EXAG) workshop at AIIDE

100. Sarkar A, Summerville A, Snodgrass S, Bentley G, Osborn J

(2020) Exploring level blending across platformers via paths and

affordances. In: Sixteenth artificial intelligence and interactive

digital entertainment conference

101. Schaul T (2013) A video game description language for model-

based or interactive learning. In: Proceedings of the IEEE con-

ference on computational intelligence in games. IEEE Press,

Niagara Falls

102. Schmidhuber J (2015) Deep learning in neural networks: an

overview. Neural Netw 61:85–117. https://doi.org/10.1016/j.

neunet.2014.09.003

103. Schrum J, Gutierrez J, Volz V, Liu J, Lucas SM, Risi S (2020)

Interactive evolution and exploration within latent level-design

space of generative adversarial networks. In: Proceedings of the

genetic and evolutionary computation conference. ACM

104. Schrum J, Volz V, Risi S (2020) CPPN2GAN: combining

compositional pattern producing networks and GANs for large-

scale pattern generation. In: Proceedings of the genetic and

evolutionary computation conference. ACM

105. Schuster M, Paliwal KK (1997) Bidirectional recurrent neural

networks. IEEE Trans Signal Process 45(11):2673–2681

106. Scirea M, Eklund P, Togelius J, Risi S (2018) Evolving in-game

mood-expressive music with metacompose. In: The audio

mostly 2018 on sound in immersion and emotion, pp 1–8

107. Serpa YR, Rodrigues MAF (2019) Towards machine-learning

assisted asset generation for games: a study on pixel art sprite

sheets. In: 2019 18th Brazilian Symposium on Computer Games

and Digital Entertainment (SBGames). IEEE, pp 182–191

108. Shaham TR, Dekel T, Michaeli T (2019) Singan: learning a

generative model from a single natural image. In: Proceedings of

the IEEE international conference on computer vision,

pp 4570–4580

109. Shaker N, Yannakakis G, Togelius J (2010) Towards automatic

personalized content generation for platform games. In: Sixth

artificial intelligence and interactive digital entertainment

conference

110. Shaker N, Togelius J, Yannakakis GN, Weber B, Shimizu T,

Hashiyama T, Sorenson N, Pasquier P, Mawhorter P, Takahashi
G et al (2011) The 2010 Mario AI championship: level gener-

ation track. IEEE Trans Comput Intell AI Games 3(4):332–347

111. Shaker N, Nicolau M, Yannakakis GN, Togelius J, O’neill M

(2012) Evolving levels for Super Mario Bros using grammatical

evolution. In: Computational intelligence and games. IEEE,

pp 304–311

112. Shaker N, Togelius J, Nelson MJ (2016) Procedural content

generation in games. Springer, Berlin

113. Shu T, Wang Z, Liu J, Yao X (2020) A novel CNET-assisted

evolutionary level repairer and its applications to Super Mario

Bros. In: 2020 IEEE Congress on Evolutionary Computation

(CEC). IEEE

Neural Computing and Applications (2021) 33:19–37 35

123

https://doi.org/10.1145/3321707.3321781
https://doi.org/10.23915/distill.00023
https://doi.org/10.23915/distill.00023
https://gaigresearch.github.io/gvgaibook/
https://gaigresearch.github.io/gvgaibook/
http://arxiv.org/abs/151106434
http://arxiv.org/abs/1911.13071
http://arxiv.org/abs/200708746
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1016/j.neunet.2014.09.003

114. Sirota J, Bulitko V, Brown MR, Hernandez SP (2019) Towards

procedurally generated languages for non-playable characters in

video games. In: 2019 IEEE Conference on Games (CoG).

IEEE, pp 1–4

115. Smith AM, Mateas M (2011) Answer set programming for

procedural content generation: a design space approach. IEEE

Trans Comput Intell AI Games 3(3):187–200

116. Smith G, Whitehead J (2010) Analyzing the expressive range of

a level generator. In: Proceedings of the 2010 workshop on

procedural content generation in games, pp 1–7

117. Snodgrass S, Ontañón S (2014) Experiments in map generation

using Markov chains. In: Proceedings of the 9th conference on

the foundations of digital games

118. Snodgrass S, Ontanon S (2015) A hierarchical MDMC approach

to 2D video game map generation. In: Eleventh artificial intel-

ligence and interactive digital entertainment conference

119. Snodgrass S, Ontanón S (2016) Controllable procedural content

generation via constrained multi-dimensional Markov chain

sampling. In: IJCAI, pp 780–786

120. Snodgrass S, Ontanón S (2016b) Learning to generate video

game maps using Markov models. IEEE Trans Comput Intell AI

Games 9(4):410–422

121. Snodgrass S, Sarkar A (2020) Multi-domain level generation

and blending with sketches via example-driven BSP and varia-

tional autoencoders. In: Proceedings of the 15th international

conference on the foundations of digital games

122. Snodgrass S, Summerville A, Ontañón S (2017) Studying the

effects of training data on machine learning-based procedural

content generation. In: Thirteenth artificial intelligence and

interactive digital entertainment conference

123. Soares ES, Bulitko V (2019) Deep variational autoencoders for

NPC behaviour classification. In: 2019 IEEE Conference on

Games (CoG). IEEE, pp 1–4

124. Stanley KO, Miikkulainen R (2002) Evolving neural networks

through augmenting topologies. Evol Comput 10(2):99–127

125. Summerville A (2018) Expanding expressive range: evaluation

methodologies for procedural content generation. In: Fourteenth

artificial intelligence and interactive digital entertainment

conference

126. Summerville A, Mateas M (2016) Super Mario as a string:

platformer level generation via LSTMs. In: International Joint

Conference of DiGRA and FDG

127. Summerville A, Guzdial M, Mateas M, Riedl MO (2016)

Learning player tailored content from observation: platformer

level generation from video traces using LSTMs. In: Twelfth

artificial intelligence and interactive digital entertainment

conference

128. Summerville A, Mariño JR, Snodgrass S, Ontañón S, Lelis LH

(2017) Understanding Mario: an evaluation of design metrics for

platformers. In: Proceedings of the 12th international conference

on the foundations of digital games, pp 1–10

129. Summerville A, Snodgrass S, Guzdial M, Holmgård C, Hoover

AK, Isaksen A, Nealen A, Togelius J (2018) Procedural content

generation via machine learning (PCGML). IEEE Trans Games

10(3):257–270

130. Summerville AJ, Mateas M (2016) Mystical tutor: a magic: the

gathering design assistant via denoising sequence-to-sequence

learning. In: Twelfth artificial intelligence and interactive digital

entertainment conference

131. Summerville AJ, Philip S, Mateas M (2015) MCMCTS PCG 4

SMB: Monte Carlo tree search to guide platformer level gen-

eration. In: Artificial intelligence and interactive digital

entertainment

132. Togelius J, Kastbjerg E, Schedl D, Yannakakis GN (2011) What

is procedural content generation? Mario on the borderline. In:

Proceedings of the 2nd international workshop on procedural

content generation in games. ACM, p 3

133. Togelius J, Yannakakis GN, Stanley KO, Browne C (2011b)

Search-based procedural content generation: a taxonomy and

survey. IEEE Trans Comput Intell AI Games 3(3):172–186

134. Togelius J, Champandard AJ, Lanzi PL, Mateas M, Paiva A,

Preuss M, Stanley KO (2013) Procedural content generation:

goals, challenges and actionable steps. In: Schloss Dagstuhl-

Leibniz-Zentrum fuer Informatik

135. Togelius J, Shaker N, Karakovskiy S, Yannakakis GN (2013b)

The Mario AI championship 2009–2012. AI Mag 34(3):89–92

136. Torrado RR, Bontrager P, Togelius J, Liu J, Perez-Liebana D

(2018) Deep reinforcement learning for general video game AI.

In: Proceedings of the 2018 IEEE Conference on Computational

Intelligence and Games (CIG). IEEE, pp 1–8

137. Torrado RR, Khalifa A, Green MC, Justesen N, Risi S, Togelius

J (2019) Bootstrapping conditional gans for video game level

generation. arXiv preprint arXiv:1910.01603

138. Treanor M, Blackford B, Mateas M, Bogost I (2012) Game-o-

matic: generating videogames that represent ideas. In: Pro-

ceedings of the the third workshop on procedural content gen-

eration in games, pp 1–8

139. Tsujino Y, Yamanishi R (2018) Dance dance gradation: a gen-

eration of fine-tuned dance charts. In: International conference

on entertainment computing. Springer, pp 175–187

140. Volz V, Schrum J, Liu J, Lucas SM, Smith A, Risi S (2018)

Evolving mario levels in the latent space of a deep convolutional

generative adversarial network. In: Proceedings of the genetic

and evolutionary computation conference. ACM, pp 221–228

141. Volz V, Justesen N, Snodgrass S, Asadi S, Purmonen S,

Holmgård C, Togelius J, Risi S (2020) Capturing local and

global patterns in procedural content generation via machine

learning. In: Proceedings of the 2020 IEEE Conference on

Games (CoG)

142. Walton N (2019) AI Dungeon 2: creating infinitely generated

text adventures with deep learning language models. https://pcc.

cs.byu.edu/2019/11/21/ai-dungeon-2-creating-infinitely-gener

ated-text-adventures-with-deep-learning-language-models/.

Accessed 2 May 2020

143. Wang T, Kurabayashi S (2020) Sketch2map: a game map design

support system allowing quick hand sketch prototyping. In:

Proceedings of the 2020 IEEE Conference on Games (CoG)

144. Wong A, Wang GH (2017) Image_retrieval_demo: a demo for

image retrieval. https://github.com/DoctorKey/image_retrieval_

demo

145. Wulff-Jensen A, Rant NN, Møller TN, Billeskov JA (2017)

Deep convolutional generative adversarial network for proce-

dural 3D landscape generation based on DEM. In: Interactivity,

game creation, design, learning, and innovation. Springer,

pp 85–94

146. Yang Z, Sarkar A, Cooper S (2020) Game level clustering and

generation using Gaussian mixture VAEs. In: Proceedings of the

sixteenth annual AAAI conference on Artificial Intelligence and

Interactive Digital Entertainment (AIIDE 2020). AAAI

147. Yannakakis GN, Togelius J (2011) Experience-driven proce-

dural content generation. IEEE Trans Affect Comput

2(3):147–161

148. Yannakakis GN, Togelius J (2018) Artificial intelligence and

games. Springer. http://gameaibook.org

149. Yannakakis GN, Liapis A, Alexopoulos C (2014) Mixed-ini-

tiative co-creativity. In: Proceedings of the 9th conference on

the foundations of digital games

150. Yoo B, Kim KJ (2016) Changing video game graphic styles

using neural algorithms. In: 2016 IEEE conference on Compu-

tational Intelligence and Games (CIG). IEEE, pp 1–2

36 Neural Computing and Applications (2021) 33:19–37

123

http://arxiv.org/abs/1910.01603
https://pcc.cs.byu.edu/2019/11/21/ai-dungeon-2-creating-infinitely-generated-text-adventures-with-deep-learning-language-models/
https://pcc.cs.byu.edu/2019/11/21/ai-dungeon-2-creating-infinitely-generated-text-adventures-with-deep-learning-language-models/
https://pcc.cs.byu.edu/2019/11/21/ai-dungeon-2-creating-infinitely-generated-text-adventures-with-deep-learning-language-models/
https://github.com/DoctorKey/image_retrieval_demo
https://github.com/DoctorKey/image_retrieval_demo
http://gameaibook.org

151. Yumer ME, Asente P, Mech R, Kara LB (2015) Procedural

modeling using autoencoder networks. In: Proceedings of the

28th annual ACM Symposium on User Interface Software &

Technology, UIST ’15. Association for Computing Machinery,

New York, NY, USA, pp 109–118. https://doi.org/10.1145/

2807442.2807448

152. Zafar A, Irfan A, Sabir MZ (2019) Generating general levels

using Markov chains. In: 2019 11th Computer Science and

Electronic Engineering (CEEC). IEEE, pp 134–138

Publisher’s Note Springer Nature remains neutral with regard to

jurisdictional claims in published maps and institutional affiliations.

Neural Computing and Applications (2021) 33:19–37 37

123

https://doi.org/10.1145/2807442.2807448
https://doi.org/10.1145/2807442.2807448

	Deep learning for procedural content generation
	Abstract
	Introduction
	Scope of the review
	Related work
	Novelty of the review
	Paper collection methodology

	Content types
	Game levels
	Text
	Character models
	Textures
	Music and sound

	Training methods and neural architectures of DLPCG
	Supervised learning
	Standard unsupervised learning
	Reinforcement learning
	Adversarial learning
	Evolutionary computation

	Using deep learning to evaluate content and content generators
	Analyzing content
	Playing content
	Experiencing content

	Discussion and outlook
	Mixed-initiative DLPCG
	Style transfer, breeding and blending
	Underexplored content types
	Content generation in real time---personalized game content
	Learning from small data
	Generalization across games
	Orchestration for game generation

	Conclusions
	Acknowledgements
	References

